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Abstract

Analytical eigenfunctions and eigenvalues for the Morse oscillator were applied to investigate
the quantum resonant beats and revivals of wave packet propagation. A concise way for exact
prediction of the complete revival period of the Morse oscillator was given for the first time. It was
suggested that any complete period was made of integer numbers of the minimum or fundamen-
tal period. Within the fundamental period, the anharmonicity of this oscillator appeared to cause
interesting space-time phenomena that include relatively simple Farey-sum revival structures. In
addition, a simple sum of two Morse oscillators led to a double-Morse well whose geometric sym-
metry provided analytical eigenfunctions and eigenvalues for certain low-lying energy levels. The
guantum tunneling between the double-Morse well significantly affected the resonant beats and
revivals local to each well, and gave rise to interesting tsunami-like waves in the middle of the
double well. Furthermore, quantum rotor wave functions based upon Wigner-D matrix were ap-
plied to investigate the quantum resonant beats and revivals that occur in experimentally accessible
spin systems. Interesting physical effects in quantum rotors between half-integer spin and integer
spin systems were observed to show effects of symmetry. Essentially, the quantum revivals in these
guantum systems exhibited number-information aspects of surprisingly simple Farey-sum and Ford
circles geometry. Such quantum dynamics will provide a physical insight to further develop mat-
ter wave packet technology, and might have applications for quantum information processing and

guantum computing.
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Chapter 1

Introduction

The study of wave packet dynamics has a long history, and has more recently been acceler-
ated by modern computer technology that provides better ways to visualize spatial and temporal
behaviors. Wave packet dynamic systems have been studied for over 200 years in a wide scope:
from classical tsunami waves to electromagnetic non-dispersive solitary waves. In 1926, Erwin
Schrodinger developed quantum matter wave for the solutions of Schrodinger’s equation [1]. Since
then, the dynamic behaviors of quantum wave packets have been active research topics in atomic
physics and molecular chemistry. In a theoretical way, quantum wave packet studies served as the
solid steppingstone to the birth of quantum optics in 1963 [2], where Glauber’s work on the quan-
tum theory of optical coherence was based on the coherent states of quantum harmonic oscillator
in Figure 1.1. This work led him to become the 2005 Nobel Laureate in Physics [3].

A coherent state is a remarkable example for the correspondence principle that connects clas-
sical and quantum physics. The wave packet of this coherent state keeps the same shape as the
ground state, but its time propagation is concentrated along the classical trajectories of a classi-
cal harmonic oscillator. The moving path of a coherent state of quantum harmonic oscillator is
illustrated in Figure 1.1 (d-f). The coherent states are important for comparing the wave-like and
particle-like behavior of quantum systems.

In an experimental way, a milestone of the quantum wave packet study was reached in 1987
through Zewail's work on the transition states of chemical reactions using femto-sgdbrids)
spectroscopy [4]. His investigation of ultra-fast chemical phenomena was based on the observation
of coherent wave packet motion between covalent and ionic states. This work marked the birth of
femto-chemistry, and led him to become the 1999 Nobel Laureate in Chemistry [5]. The gener-
ation of vibrational wave packet of molecular electrons is described in Figure 1.2. In the case of
monochromatic light as shown in Figure 1.2 (a), only one stationary state is excited. While, in
case of femto-second laser pulse as shown in Figure 1.2 (b), the intrinsic bandwidth of this ultra-

short laser pulse is broad enough to excite several stationary states simultaneously. These excited
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Figure 1.1: Coherent state of quantum harmonic potential: (a) A branch of eigenfunctions in the
potential well (red-color-line) is scaled by the Poisson-distribution (dotted-line) for keeping the
minimum-uncertainty, and (b) superposed together to form a coherent eigenfunction-wave-packet,
which establishes (c) the corresponding coherent probability-wave-packet. (d) A branch of the
coherent probability-wave-packets as a function of time-step. (e) The probability density map of
the coherent wave packet as a function of space-time. (f) The 3-dimensional (3D) probability
distribution map of the coherent wave packet as a function of space-time.



electronic stationary states are superposed together to form a propagating wave packet, as shown
in the top of Figure 1.2 (b). The resulting wave packets can be seen as a linear combination of the

oscillator’s eigenfunctions
N

Y@ t) = cudn(x)e " (1.2)

n=0
where¢, (z) denotes the-th order eigenfunctior,, stands for the:-th order constant coefficient,
e~tEnt/h is the complex exponential factor related with timeThe wave packets established by
various ultra-fast light pulses are applied for a detailed understanding of molecular dynamics,

which is of fundamental interest in physics and chemistry.
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Figure 1.2: Generation of guantum dynamic wave packet in potential well (red-color-line). (a)
Monochromatic light is able to excite only one stationary state. (b) An ultra-fast laser pulse is
capable to excite a branch of stationary states that superpose into a wave packet.



In the late 1970s and the early 1980s, quantum wave packet studies began with revivals in
cavity quantum electrodynamics simulations by Eberly [6] and computer simulations of molecu-
lar vibrational dynamics [7, 8]. With the birth of ultra-fast laser spectroscopy in the late 1980s,
it became possible to observe quantum wave packet resonance and the localized periodic mo-
tion in many experimental situations [4, 9, 10] involving atoms, molecules, and cavities [10, 11].
Considerable progress has been made in understanding the physics and chemistry of ultra-fast
spectroscopy and laser-molecular interaction [11, 12]. Many of existed research groups focus on
real-time experimental observation and simulation. For instance, a quantum dynamics group in the
Max-Planck-Institute simulated its real-time observation of vibrational revival in laser-molecular
interaction [10] , whereas numerical simulation exhibits qualitative agreement with its laser-induce
H, ionization experimental data, as shown in Figure 1.3.

However, a relatively small fraction of the research involves aspects of number-theory or
information-theory that shows up in the space-time complexity of quantum wave packet dynamics.
This is still a largely unexplored field. In 2001, Harter published two pioneering papers addressing
the dynamics of wave-packet in a simple quantum rotor system &vitlgroup and Farey-sum
analysis [13, 14], his works were cited by Schleich’s group as a potential application for factoriz-
ing numbers [15, 16]. In the past decade, the examination of number-information was limited to
wave packets confined by one dimensional infinite-square-wells or flat ring potentials, as shown in
Figure 1.4. In 2011, the author demonstrated that anharmonic Morse potential well exhibits similar
Farey-sum arithmetic revival structure in its wave packet propagation [17]. This work motivated
the author to do a closer examination of the resonance and revival phenomena among various quan-
tum systems, especially the double-Morse potential wells and the dynamic quantum rotors. This
new work is the topic of this dissertation and should provide a further step towards a systematic

understanding of the rich and diverse behavior of quantum wave packet dynamics.
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Figure 1.3: Research approach from Ullrich’s group in Max-Planck-Institute. (a) Numerical cal-
culated probability plot off,” wave packet propagation. (b) The same calculated probability plot
as (a) but weighted by the ionization probability. {€) wave packet is rebuilt from experimental
data of laser-ionization [10].



Figure 1.4. Research approach from Harter’s group at University of Arkansas. The Farey-sum
structure in the quantum revivals of a Bohr ring [13].



Chapter 2

Morse Oscillator

The Morse oscillator is representing a simple but realistic choice among various anharmonic
potentials [18]. Experientially, the Morse-type anharmonic oscillators have been applied widely
for the description of covalent molecular bonding, and some important dynamic aspects of this
anharmonic oscillator have been studied [19, 20, 21, 22, 23]. Mathematically, the Morse potential
is one of the simplest models for describing the anharmonicity of real chemical bonding, and is
given by

Var(z) = D(1 — e 2%)? (2.1)

In this one dimensional model of Equation 2.1, the coefficiéns the bond dissociation energy
where the potential approaches its maximum inflection value agproaches-o, it relates to

both harmonic frequenay,. and anharmonic frequency,, and is found by the equation

D
4Wx

(2.2)

The constant parameter regulates the “width” of the Morse potential well by associating the

reduced masg and anharmonic frequenay,, and is found by the relation

2w Jwep
a =1/ ; =1/ 5D (2.3)

The coordinate: denotes the variation of a chemical bond from its equilibrium length, and where

the potential has its minimum and zero value at 0.

Recently McCoy [24] revived interest in exact eigenfunctions and eigenvalues [25] of Morse
oscillator as shown in Equation 2.4 and Equation 2.5a below. This allows analytical analysis of
their quantum dynamics that may shed light on dynamics of extended Morse-type systems and
anharmonic potentials in general.

The Morse oscillator, as an anharmonic oscillator, has unequal spacing between its energy



levels which is in contrast with the uniform energy level spacing of harmonic oscillator. The
energy levels,, = hw, in Equation 2.4 have uniform (harmonic) spacih@ = hw. compressed

at higher quantum numberif anharmonic frequency,, is positive.

Ep = hwy = hwe(n + =) — hwy(n + 5)? (2.4)

The corresponding Morse eigenfunctions of the eigenvalues are given by Equation 2.5d fthere

represents a generalized associated Laguerre polynomial [24].

u(z) = e”é’”ym)“")\/ A C) 259

The exponentially scaled coordinater), and exponent(n) are given as follows

y(r) = ve (2.5b)

s(n) = %(V —2n —1) (2.5¢)

Here, the scaling parameteis given as

(2.5d)

A linear combination of the stationary eigenfunctions will give rise of a dynamic wave packet

Nmax

W) = eadula)e (2.6)

n=0

wheren,,.. 1S the highest bound state that its eigenvalue is the nearest value to dissociative limit
D, ¢, stands for the:-th order constant coefficient, and*”»*/" is the complex exponential factor
related with timet.

A sample Morse oscillator potential shown in Figure 2.1 (a) was made of harmonic frequency



we/2mc = 18(cm~') and anharmonic frequency, /27c = 1(em™'), and each of its stationary
eigenfunctionp,, was plotted on a energy level of eigenvaltig If the initial wave packet (Equa-
tion 2.6 att = 0) is a sum of nine stationary bound states (fram= 0 to n,,,, = 8) shown
in Figure 2.1 (b), it evolves in space and time as shown in Figure 2.1 (d-f) ending in the lowest
U(z,T) trace of Figure 2.1 (d) with a full revival of its initial shape.

For simplicity, the constant coefficient = 1 is assumed in this Morse oscillator research.
The space-time plots of the probabiliy(x, t)*¥(z,¢) in Figure 2.1 (e-f) show quantum beats in
space and time. The resonant beat nodes and anti-nodes in Figure 2.1 (e-f) outline semi-classical
trajectoriese(¢) corresponding to energy valués ranging from the lowest ground stakg up to

the highestr,,

max "
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Figure 2.1: The Morse oscillator with harmonic frequengy2rc = 18(cm ') and anharmonic
frequencyw, /2mc = 1(ecm™ ). (a) A total of 9 bound stationary states is listed along the corre-
sponding energy level in the potential well (red-color-line), these wave functions are normalized
(indicated by the same-height dotted-line). (b) The probability distribution of these stationary
states is listed along the corresponding energy level in the potential well. (c) The corresponding
probability-wavepacket is formed by the superposition of these bound eigenstate® a(d) The
wavepacket is propagated along the time-steps. (e) The probability density map of the wavepacket
as a function of space and time. The double arrows connecting (d)-(e) indicate the correspond-
ing time events. (f) The 3 dimensional (3D) probability distribution map of the wave packet as a
function of space and time.
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2.1 Analysis of Exact Revival Periodl}.,

In the analysis of wave packet dynamics in anharmonic oscillating system, the first essential and
challenge thing is to do a prediction of the exact revival period of the wave packet. Suppose

the revival period time, the wave packet function satisfiés, t) = ¢ (x,t + T'), and is expressed

as
N N
W, t) =Y du(@)e = plat +T) =Y pu(x)e” H D) (2.7a)
n=0 n=0
Whent = 0, it becomes
N N B
U(@,0) = ¢u(z) =¢(x,T) =Y dp(x)e n7" (2.7b)
n=0 n=0

For nontrivial solution, it demands

bu(z) = Bu(x)eHT (2.7¢)
Then, it requires
%T =27 M, (2.7d)

where M,, are integers. Whell,, is substituted by the Morse energy level Equation 2.4, this

requirement becomes
E,T=[n+ 2)w. — (n+ =)°w,|T = 27 M,, (2.7¢)
It can be rewritten as

1 1
EnnT = [(n+1+ J)we = (n+ 14 )w T = 2rM, (2.7f)

11



whereM,, ., are integers. Then the substraction of above two nearby equations gives
BT — E,T = [we — (2n + 2)w, T = 27(Mpy1 — M,) (2.79)
Similarly, it can be rewritten as
EnioT — EoiiT = [we — (2(n + 1) + 2)wy T = 27(Myy2 — Myi1) (2.7h)
Then the substraction of above two nearby equations gives
(BnyoT — EpirT) — (Bpr T — E,T) = 2w, T = 210(M,, 45 — 2M, 1 + M,,) (2.7i)
Therefore, the revival period time of the Morse oscillator can be expressed concisely as

T="mM (2.8a)
Wy
whereM is integer coefficient. This concise revival period formula reveals two facts of the dynamic
wave packets in the Morse oscillating system. The first fact is that the minimum or fundamental
revival period is
™

Tminfrev = (2 . 8b)
w

X

which is exactly the shortest revival time for Morse oscillator found by Wang and Heller [23].
And the second fact is that any complete revival period is made of integer numbers of the fun-
damental period. In other words, any complete quantum trajectory must contain integer numbers
of semiclassical-trajectory-profile period (the minimum revival period) which is approximately
outlined by a classical particle oscillating with anharmonic frequéagyin the Morse potential.

For illustrating the connection between semiclassical-trajectory-profile period and quantum
period, consider three classical particles with corresponding quantum eigenvalue energies are 0s-

cillating in a Morse potential well as shown Figure 2.2 (a), where the rainbow-shape trajectory of a

12



classical particle witht; energy is having a classical oscillating peribalose to the fundamental
period ofr/w,. While the trajectory of classical particle witti; = D energy indicates that this
particle is escaping from the limit of the Morse potential well, and will never come back.

Above simple procedure provides a general revival period formula for the Morse oscillator
straightforwardly. For practical applications, it is necessary to determine the integer coelficient
of Equation 2.8a. In order to determine a specific intégeior a specified Morse oscillator with

given parameter§u.,w, ), more analysis are required.

Dissociation energy: D o 1P ._'________——%Efg
T T L — A 1
Quantum deviation: 8, <D—E, . ="To| ] >
. ' L Fi% _ 4 =
Highest bound state energy: E,” sl Y n=1
JE
. ) 2 2t
The maximum beat period T, ,...=———
(E,~E) | ol...ti}
—o.1,10
1
.. . . T U
The minimum revival period:T,,, , 6 =— <" > T e
w
X

Time

1
T =T Numerator[8, + =] |«-» ® EME
rev max—beat [ N 2] ".ﬁ
) 1 @ i erny |
L = T, ,.Denominator[6, + Ej<)¥ l?f) o | Classical Trajectory

-0.1 0.0 0.1 0.2 03 0.4 0.5
x (nm)

Figure 2.2: The connection between the maximum beat period and semiclassical-trajectory-profile
period (the minimum revival period). (a) 3 classical trajectories of particles oscillating in a Morse
potential are plotted in one period time, and one additional classical trajectory of particle with
dissociation energy is also plotted. The red-balls in (a) and (b) indicate that these classical
particles have the same energies as the corresponding quantum eigenvalue energies. (b) The prob-
ability amplitudes of 3 bound quantum eigenfunctions are listed along energy level in a Morse
potential (red-thick-line). In the bottom, two fundamental ways for predicting the same period are
symbolized by two basic monetary units: the U.S. dollar and Chinese yuan.
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The beating between waves with close frequency is playing key role in wave packet dynamics.
Especially, the maximum beat peri@d,.._1..; generating by two closest bound energy levels in
the Morse well is the key for searching revival period. A complete revivaléf, t)|? at timeT,.,
must contain integer numbers of all beat periods including at least one fundamental time period

Thaz—veat TOr the slowest beat frequency. This assumption of wave beat period is expressed as
Trev = maszeatN (29)

whereN is integer coefficient. According to the Morse energy level Equation 2.4, the gap between
energy levels is given

AE =E, — E,_; = lMw. — 2w,n) (2.10)

This Equation 2.10 exhibits clearly thatE approaches minimum as approaches maximum,
which indicates the minimum energy gap is occurring between the highest bound quantum number
Nmae @Ndn,,.q..—1. Therefore, by the energy and frequency relationghip iw of quantum matter

wave, the maximum beat period between any two energy levels is expressed as

27 21 27

Tnaz—beat = = h = 211
beat (Aw)min  F - F We — 2Wy Mg ( )

Nmaz Nmaz—1

For estimating the highest bound energy levgl.. in above Equation 2.11, it is supposed that
nmae 1S the integer part of a real numbey.,;. Thus, by substituting this real number,,; into
the energy Equation 2.4, the resulted eneligy ,, will be exactly equal to the dissociative limit

given by Equation 2.2. This equivalent relation is expressed as

1 1 W2
Enreal = hwe(nreal + 5) - hwx(nreal + 5)2 =D = 4WX (2128.)

This is a perfect square equation with one root given by

We 1
2wy, 2

(2.12b)

Nreal =

14



The integer part of,., (the floor ofn,.,) is the highest Morse quantum numbey,,. (For

Figure 2.1, this i3, = 8).

1
Nonaz = FLOOT [Npeqr] = Floor[;UTe — 5] (2.12¢)
X

The following fractional party of n,.. is called the quantum deviation between the dissociative
limit D and the highest bound energy level.

5N = Nyeal — Nmaz (212d)

As illustrated in Figure 2.2(b)y is proportional to energy gap betweénand the highest bound
energy level.

Then, the fundamental peridd,.._..: in Equation 2.11 can be expressed in terni pfas:

2m 2 2
Tmax—beat: 9 = —9 45 = —9 We _l_5
We Wy Nmaz We Wx(nreal N) We wX< 2wy 2 N)
T
T _ (213a)
wX(5N + %)

By applying the fact ofl},;,_... = 7/w, given by Equation 2.8b, above Equation 2.13a can be

rewritten as
T 1

WX((SN + %) - mzn—rev(

S 2.13b

Tmax —beat —

Thus, the relationship between these two fundamental building blocks of a complete Morse revival
period is given by

Tonin— 1
min—rev :5N+_ (214a)

And based on the statements from Equation 2.8a and Equation 2.9, a perfect quantum revival
period of the Morse oscillatdr,.., is composed of integer numbers of the fundamental periods as
following

T're'u - Tmin—revM - Tmam—beatN (214b)

15



As a direct result of above Equation 2.14a and Equation 2.14b, the ratio of those undetermined
integer coefficients satisfy

— =Syt = (2.14c)

Therefore, in the approach of beat-period way, a perfect quantum revivaltinef the Morse

oscillator can be expressed in termsi®f,._1..: anddy as following

1
Trev - Tmax—beatN = Tmax—beatNumeratOT [5N + 5] (215a)

At the same time, in the approach of semiclassical-trajectory-profile Way,can also be ex-

pressed in terms df,,,;,,_ .., andd, as following
. 1
Trev = Trin—reoM = Trnin_rev Denominator [0 + 5] (2.15b)

Thus, eithefl},,;,, _reo OF Thhas—beat CAN e served as the fundamental building blocK of. A
useful dairy life analogy to this fact is that one product can be paid by two basic monetary units in
the world market. If these two fundamental periods are symbolized by two basic monetary units:
American dollar and Chinese yuan, as marked by the double-arrow in the bottom of Figure 2.2,
then some immediate questions will be coming up, such as “When these two currencies are used in
the quantum world, what will be the exchange rate between them?” For answering such interesting
guestion, the consequent results and analysis of these two fundamental periods are discussed in the

following section.
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2.2 Fibonacci Sequence and Exchange Rate é;f"i”*

max—beat

The Morse complete revival peridd.., appears complex because of the anharmonicity of Morse

oscillators. For a simple illustration without losing the generality, as shown in Figure 2.3 (a)
through (c), the value df,.., was increased step by step from the very beginning of the minimum

revival period?},;,,—reo-

By keeping the same anharmonic frequengy/2rc = 1(cm™'), the occurring one com-
plete revival time of Morse oscillator withv,/27c¢ = 18(cm™!) as shown in Figure 2.3 (a)
was exactly equal to the minimum revival peri@y,;,_.... Here, one complete revival period
IS Treo = Traz—teat = Lmin—rev, @nd the ratio of this minimum revival period to this maximum
beat period wag,.;,,_rev/Timaz—bear = 1/1.

Meanwhile, as shown in Figure 2.3 (b), the appearing one complete revival time of Morse
oscillator withw,/2mc = 17(ecm™!') was exactly twice as longer as the minimum revival period
Trin—rev- Here, one complete revival period 5., = Traz—beat = 2Tmin—rew, and the ratio
of this minimum revival period to this maximum beat period W&s,, e/ Tmaz—beat = 1/2.
Interestingly, this appearing revival timg., = 27,i,—rev = 27/w, is exactly equal td,,,,o.
in the Equation 2.16. According to a semiclassical treatment for general anharmonic oscillators
[26, 27, 28, 29], the complete revival time for Morse oscillator would be approximated by the

following Equation 2.16 assuming large quantum numberkse to their average.

2m 2
Tapprom - W - U}_ (216)
2 | "dn2 }n:ﬁ X

Moreover, as shown in Figure 2.3 (c), the presenting one complete revival period of Morse
oscillator withw, /2rc = 17 + 5(em™!) was exactly triple as longer as of the minimum revival
periodT,,;,_.... Here, one complete revival period WAS, = 27,,00—beat = 3L min—rev, @and the
ratio of this minimum revival period to this maximum beat period Was, ,co / Trnaz—beat = 2/3-

Remarkably, one complete revival peridd, was composed of a whole integer number of the

fundamental period’,in—rev (OF Thnaz—beat), @Nd the ratiol},;,—rev / Tnaz—vear WaS able to form
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Figure 2.3: Fibonacci sequence and exchange rate. (a) When 1/2, theT,., is composed
of one 1,00 bear @NA ONET i rern- (D) Whendy = 0, theT,., is composed ol 7},..—peatr @Nd
2T min—rev- (€) Whendy = 1/6, theT,., is composed 027,z peat ANA3T i —rew- (d) The ratio
Of Tin—rev 10 Thaz—vea: @re forming the the Fibonacci sequence (symbolized by the spiral shell
background). The inserted monetary picture symbolizes the rati®,0f ./ Tmaz—bear 8S the

exchange rate of currency.
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the Fibonacci sequendd /1,1/2,2/3,3/5,5/8,....}. In other word, the Fibonacci sequence is
the subset of the rati®,,,;,, v/ Timar—bear- A Useful analogy for describing the alternative ratio of
Tonin—rev/ Tmaz—vear IN Various revival periods is the currency exchange rate, such as exchange rate
between U.S. dollar and Chinese yuan is varying with economic circles.

Furthermore, as shown in Figure 2.4 (a), the presenting one complete revival time of Morse
oscillator withw, /2wc = 17.5(cm™!) is exactly four times of the minimum revival tin¥,,;,, ...
And in Figure 2.4 (b), the presenting one complete revival time of Morse oscillatorayjtbre =
17.2(cm™1) is exactly five times of the minimum revival tin¥#,;,, ,..,. Therefore, it was indicated
that any completely revival tim&,., of the Morse oscillators was made of the minimum revival
time 7,,.;»_ e integrally. This quantized period concept is a restatement of the Equation 2.15a and

Equation 2.15b.

() x
g0 90 ¥0_TO0_ 00

1 o, 2rc=1lem™
@ }‘21’:5:17+%cm"
== :L
N 10

Iyl
=>T,,, = Iiﬁn"}'mm{_b&m
_STmm —rev
Y

Time (ps)
w

w 2me=1lem™

a) f2me=1T+= c:m'

=>(6, += )——
3?

= - max—beat

{uru) x
g0 90 r0 TO 00 s
01
0T
0
0
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Figure 2.4: A complete revival tim&,., of the Morse oscillators is a quantized by fundamental
period. (a) Whery = 1/4, theT,., is composed 087,,,..—pear ANA4AT 10— rer- (D) Whendy =
1/10, theT,., is composed 037,z veat ANAST in—reo-
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2.3 Farey Sequence and Ford Circles within a Perfect Minimum Revival Period

From previous section, a highly symmetric revival structure within a perfect minimum revival
period (T in—rev/Tmaz—veat = 1) Was observed in Figure 2.3 (a). For analyzing such symmet-
ric revival pattern in detail, a sample Morse oscillator potential witfi2rc = 42(cm™!) and
wy/2mc = 1(em~') was introduced. Then, according to Equation 2.12c for the maximum bound
eigen states, a total @fl bound eigenfunctionsn,,,., = 20) was allowed in this sample poten-
tial as illustrated in Figure 2.5. The superposition of these bound wave functions would form a
probability-wave-packet)*1) oscillating in this potential well.

Importantly, according to Equation 2.15b for exact revival period, the complete revival period
of this Morse wave packet was exactly equal to a minimum revival pefipd: = 17T,in—rev =
1T maz—veat = 1/(2¢(em)™1) = 16.7(picro — second). For illustrating the symmetric beauty of
such perfect minimum revival period (denotedds,, e,/ Tmaz—veat = 1), the space-time maps

composed of two complete revival periods were plotted in Figure 2.6 for comparison.

@ (b) B 1
400+ — 400+ — -
300 1S 0 =

, = 1§

S .g — J

E Eigenstate (n) = EB - . Eigenstate (n) 1 .*E'
= 0 10 20 ,E = 0 10 201 8
= 200 o = 200 { &
& s

= T &

100+ 100+
00 02 04 0.6 0.0 02 04 0.6
x (nm) X (nm)

Figure 2.5: A sample Morse oscillator with harmonic frequeagy2rc = 42(cm~') and anhar-
monic frequencyw, /2mc = 1(ecm™1). (a) A total of21 bound stationary states is listed along the
corresponding energy level in the potential well (red-color-line), these wave functions are normal-
ized (indicated by the same-height dotted-line). (b) The probability distributions of these stationary
states are listed along the corresponding energy level in the potential well.
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Figure 2.6: Space-time map in 2 complete revival periods. (a) The Morse wave packet composed
of 21 bound states was propagated along the time-step. (b) The probability density map of the
wave packet as a function of space and time. The double arrows connecting (a)-(b) indicate the
corresponding time events.
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2.3.1 Autocorrelation Function and Farey-sum Sequence

For finding the periodic footprints in this kind of dynamic quantum systems, an autocorrelation-
function is often useful a sharp tool [27]. According to the time-evolution in Equation 2.6, an

autocorrelation-function is expressed as Equation 2.17, wherethe eigen-frequency.

Nmaz Nmax

Aty =Y e = 3 eient (2.17)
n=0

n=0

Consider above dynamic wave packet in Figure 2.6 , the corresponding autocorrelation func-
tion was composed dfl eigen-frequencies. As illustrated in Figure 2.7 (a), the npdit)| =
A(t)*A(t) was plotted fromt = 0 tot = 17,.,. Meanwhile, as shown in Figure 2.7 (b), the
norm of wave packelt)| = v/¢*1) was plotted as a function of space and time. Here, the reason
for plotting |¢/| = /"¢ instead of the usuaty|> = v*i is due to the fact that the plot ¢f|

is sharper than the plot ¢f|*, while both|v| and |¢)|* contain the physical meaning of proba-

bility. For instance, the revival plot in Figure 2.7 (b) is sharper and clearer in comparison to the
revival plot of Figure 2.6 (b), while both plots share the same essential information of wave packet
dynamics.

By comparing these two plots in Figure 2.7 (a) and (b), a periodic correlation was clearly
indicated. This closer examination of fractional revival in Figure 2.7 leads to a remarkable dis-
covery that the quantum revival structure was nearly perfect match with the Farey-sum sequence

. 5,1,5,2,2}, as denoted by the vertical dashed lines in Figure 2.7 (a). In mathematic number
theory, the Farey-sum-tree or Farey-sum sequence is the sequence of irreducible rational numbers
betweer) and1, the Farey sequence starts with the valié, and ends with the valug/1 [30].

The simple Farey-sum rule for adding fractions is illustrated in Figure 2.8 (a) .
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Figure 2.7: The Farey-sum sequence structure appearing in quantum dynamic pattern in the Morse
oscillator with parameters, /2rc = 42(cm™!') andw, /27c = 1(cm™!). (a) The norm of auto-
correlation function(| A(¢)| with n,,., = 20) is plotted in one complete revival peridd., whose
fractions{3, 1, 1, 2, 2, 2} are denoted by the vertical dashed lines. (b) One complete revival period
plot of the wave packet ¥ (zx, t)| with n,,,, = 20), the color denotes the probability density of the

wave packet. The double dashed arrows connecting (a)-(b) indicate the corresponding time events.
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2.3.2 Ford Circles Geometry for Quantum Revivals

There is an interesting connection between Farey-sum sequence and Ford circles [31]. For instance,
a Farey-sum sequence bfdepth{9, 1 1 1 1 2 1 23 143233 42 8 11 was displayed

by a total of19 mutually tangent circles in Figure 2.8 (b), and the fractional number was sitting
inside of each circle. If the base line distance between two biggest c{itleg is defined as one

unit length, then the tangential position of each circle to the horizontal base line was a fraction
of the unit length, which was marked by the red-arrow in Figure 2.8 (b-c). Thus, the fractional

number inside of each circle was to denote its tangential position of the base line.

"D "denotes Farey - sum -rule L — —
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Figure 2.8: A simple relationship between Ford circles and Farey-sum sequence. (a) Some exam-
ples of the Farey-sum-rule for irreducible fractions. (b) Ford circles corresponding to Farey-sum
sequence of depth{%,1 1 1 3 21 231 2325325511 (c)Ford circles of (a) are
zoomed in to denote that each circle is tangential to the horizontal base line and its neighboring
circles.

For building the Ford circles associating with Farey-sum sequence, considgy)aarea that
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contains all rational fractions/b each with a vectoV 2 = (‘z _ g) VectorsV? = ((1)) and
V% = G) for fractions% and% pointing from original point0, 0) of thex, y coordinate system.
A remarkable fact discovered by Ford [31] is that each sueha /b point is a tangent point for one
of an infinite number of mutually tangent circles hanging below the top-horizontaline 1)
and each one of the circles having diamet@f. The first such Ford-circle is thHe= 1 case that
is a single unit diameter circle cut in half to filf\z = 1. The second case for= 2 is drawn in

Figure 2.9 that belongs to the vector surﬁ\b%‘ andV%,

I
_|_
Il
I
<

(2.18a)

=}

M=
V=

Here its vectoV 1 points to a circle of diametelr/2? that is perfectly tangent to its “parent”
unit Ford circles for fraction§ and1. Similarly, Figure 2.9 also showste= 3 vectorVthat is

sum ofV% andV%as following

(2.18D)

This kind of vector sum is named a Farey-sum after geologist John Farey [30] who used it to
compute tidal beats. Continuing on these sums between vectors gave rise a series of shrinking
circles belonging to vectori;:Vi,V%,V%,V%,V%, ...,Vg}. As illustrated in Figure 2.9, these

circles sit in the area between their Farey “parents” cir&{%sandv%.
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Figure 2.9: Building the Ford circles by vector associating with Farey-sum sequence
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2.4 Conclusion of Morse Oscillator

In conclusion, the exact analytical wavefunctions of the Morse oscillator allowed an unprece-
dented detailed analysis of the rich and diverse behavior of the quantum dynamics. Based on the
key parametefy relating with the gap between the highest bound eigenstate and the dissociation
energy, a concise way for searching the exact revival fimg of the Morse oscillator was given

for the first time. The applications of two fundamental peridgls, peq.; and7,,.;,_ .., allowed the
discovery of the relationship between Fibonacci sequence and the Morse complete revival time.
The applications of two fundamental perioflS.. _co: aNA T}, allows the discovery of the
relationship between Fibonacci sequence and the Morse complete revival time. Particularly, the
minimum period7,,;,_.., suggested a quantized period concept that the complete period is made
of integer numbers of the fundamental period in the quantum world of the Morse oscillator. A
closer examination leads to a discovery that the quantum resonance and revival structure had a
curious connection with the Farey-sum structure, which was illustrated with the classical Ford
circles. This Fibonacci-Farey-Ford geometry should provide a further step towards a systematic
understanding of the quantum wave packet dynamics, and such a quantum dynamic system may

eventually lead to applications for quantum information processing and computing.
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Chapter 3

Double-Morse Oscillator

From the study of previous chapter, it was clear that when Morse oscillators are considered as
isolated regions, their revival patterns were in perfect symmetry of Farey-sum structure, as shown
in Figure 3.1. But, when two Morse oscillators are in contact, a double-well potential is formed.
A remarkable feature of a double-well or bistable-well is that quantum tunneling occurs within the

barrier of two oscillators, and unique quantum dynamics are expected to occur in the double-well

potential.

Energy (cm™)

Time (ps)
Probability (y*)
Probability (*y)

H

Figure 3.1: Two Morse oscillators with reflective symmetry are sitting on both sides, and isolated
by infinite barrier (indicated by the thick-red-arrow). Their revival patterns are in perfect symmetry
when both of them are living in their isolated kingdoms.
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However, completely analytical solutions of double-well potentials are very rare. For instance,
the double-square-well potential provides an analytical solution but its allowed eigenvalues are
determined implicity by solving a transcendental equation. A few of partially analytical (quasi-
exactly solvable) double-well potentials are available in the literature, including sextic double-
well potential, »* potential, and the Razavy bistable potential. Furthermore, a striking feature
of quantum tunneling in double wells is the extremely sensitivity to perturbations, which makes
numerical techniques and approximation methods very difficult and requires a very careful control
of the asymptotic behavior of tails of wave functions. This is one reason why a new method to
determine exact solutions of double wells is desired and valuable.

It is worthwhile to introduce a partially analytical double-well potential from Caticha [32, 33].
Even though, only the ground state and first excited state are known analytically in this potential,

the striking beating dynamics from two tunneling states is clearly observed in Figure 3.2 (d-f).

Wavefunction ()

" Wavefunction (§)
Probability (4*¢)

(d)

Time Steps

.// \k-.
—6 -4 =2 o 2 4 [
x (nm) x (nm)

Figure 3.2: Quantum beating state in the Caticha double well potential. (a) The analytical ground
state and the first excited state are listed along the corresponding energy level in the potential well
(red-color-line). (b) The wavepacket is formed by the superposition of these eigenstated) at
(c) The probability-wavepacket is formed by the superposition of these bound eigenstates.at
(d) The wavepacket is propagated along the time-steps. (e) The probability density map of the
wavepacket as a function of space and time. (f) 3D plot of the probability density map of (e).
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3.1 A Genuine Double-Morse Potential

At first, according to the identity of hyperbolic functior* = cosh(x) + sinh(x), the Morse

potential in Equation 2.1 were expressed in terms of hyperbolic function:

Vir(z) = D(1 — e **)? = D[1 — cosh(—ax) — sinh(—ax)]? (3.1)

Then, a pair of Morse potentials equations were createtidpnd+x:

Vs (z) = D[1 — cosh(—a(z + x0)) — sinh(—a(z + x0))]? (3.2a)

Vi_(x) = D[l — cosh(a(x — xp)) — sinh(a(z — x))]? (3.2b)

These two Morse Potentials had a reflective symmetry as shown in Figufe)3 & simple sum

of these two Morse potentials gave rise a genuine symmetric Double Morse Potential:

Vi (2) = Vg (2) + Viy—(x) + constant (3.2c)

where theconstant was for vertical translation of the Double Morse potential so that its minimum
was the same as its parent potentiddgi ()| minimum = Vars (2) | minimum = Var— (@) minimum =

0, as shown in Figure 3(8).
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Figure 3.3: Building a genuine Double Morse Potential by a pair of Morse potentialig,()r)
potential sits on the left side as indicated by the black-dotted line, Whjlgx) potential sits on

the right side as indicated by the blue-dashed line, a simple sum of these two potentials results a
double-Morse potentidly,, (z) + Vi, (z) as indicated by the red thick line. (b) Then, moves the

red double-Morse potential down vertically by@ustant of Equation 3.2c so that its minimum is

the same as its parent potentials.
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3.1.1 High Fidelity between a Razavy Potential and a Specified Double-Morse potential

At the time of this research, there was no exact analytical eigenfunctions of the genuine symmetric
double Morse potential in Equation 3.2c. However, there was a special type of hyperbolic double-
well potential whose low-lying energy states was exactly solvable, and it is known as Razavy
potential [34][35] as

Vr(z) = [¢ cosh(2z) — n)? (3.3)

wheren is a positive integer for the desired energy levels, amsldetermined by the minimum
potential condition. For instance, if the desired minimum of the Razavy potential is occurring at
(x = +x0) , such as

Vr(zo) = [¢ cosh(2x) —n]* =0 (3.4a)

Then, the parameteris specified as

¢ = n sech(2x) (3.4b)

Thus, the Razavy potential can be expressed in a concrete fofry, of)

Vr(x) = [n sech(2x¢) cosh(2x) —n]* =0 (3.4¢)

Noteworthy, the lowest energy levels of this quantum potential are exactly solvable, and their
energy eigenvalues and eigenfunctions can be computed and expressed analytically in terms of a
finite number of certain common functions [34][36][35]. In 1979, Razavy was the first to develop
these exact energy levels of = 1,2,3,4) for studying a bistable potential [34]. After nearly
two decades, in 1998, Habib became the first to extend these exact energy leve(s up 506)
for studying statistical mechanics of double sinh-Gordon Kinks [36]. Since the exactly solvable
eigenfunctions of a Razavy potential are all the low-lying eigenfunctions, a deeper double-well

means more exactly solvable eigenfunctions can be found.
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For instance, as illustrated in Figure 3.4, in a shallow Razavy potential, only four stationary
wave functiongn = 1,2, 3,4) can be computed exactly, while in a deeper Razavy potential, up to
six stationary wave functions: = 1,2, 3, 4,5, 6) can be computed exactly.

Using methods developed in this work, the exact energy levels were extended(up=to
21,22) in Razavy potential, and also a specified Double-Morse potential was developed to match
a Razavy potential nearly perfectly.

To build up a best-fitting Double-Morse potential, its three paraméters,, D) were specified
with best-fit values step by step. The first key step was tocset ) so that the Double-Morse

Vi (z) of Equation 3.2c was simplified and expressed in terme@fi(2x) as

Varn () = D[2 — 4e*™cosh(2x) + 4e~*cosh?(2x) — 2e**°] + constant (3.5a)

which was the best,,,,(x) form one can get among variousvalue for a matching Razavy
equation (becausensh(2x) is the main term of Razavy equation as shown in Equation 3.4c).
Then, the second step was searching for the best-fit valug bl assuming the minimum of
both Double-Morse potential and Razavy potential were located -at + R,. This reasonable

assumptio Vi (£ Ro) = minimum, Vg(£Ry) = minimum} led z, to be determined by

—1 + 4cosh*(Ry)
\/—8 + 16cosh?(Ry)

xg = arccosh(

) (3.5b)

The last step was estimating the bets-fit valu®dfy the condition thal/s;5,(0) = Vz(0) = local-
maximum. This fitting condition ledD to be determined by
n?e*® sinh?(Rg)sech?(2Ry)

D= 3.5¢
4erosinh(xg) — 2cosh(2Ry) (3.5¢)

Based on above best-fit parameters searching scheme, a high fidelity match between the Razavy

potential and a specified Double-Morse potential was determined.
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Figure 3.4: The exactly solvable eigenfunctions are relevant with the depth of double-well. (a)
Up to four stationary wave functions = 1,2, 3,4) are exactly-computed in a shallow Razavy
potential well (indicated by red-color-line), and listed along their energy levels. (b) Up to six
stationary wave function&: = 1,2,3,4, 5, 6) are exactly-computed in a deeper Razavy potential
well (indicated by red-color-line), and listed along their energy levels.

34



For a clear picture of the quality of their match or similarity, a close look at a deep Razavy
potential with22 exactly-computed eigenfunctions (which will be used frequently in the coming
sections) was required for this research. For a Razavy potential ef 22, R, = 2), a best-fit
Double-Morse potential was of parameter valfes= 2, z, = 2.000167, D = 484) which were
calculated by Equation 3.5a, Equation 3.5b and Equation 3.5c,

Algebraically, the tiny difference between a Razavy potential{rof= 22, R, = 2) and a
Double-Morse potential ofa = 2,2 = 2.000167, D = 484) was limited to a few parts per

million, as indicated by the following underlines

Vi(z) = 484 — 35.44718568 cosh(2x) + 0.649020130 cosh?(2z) (3.6a)

Vi () = 484 — 35.44718997 cosh(2x) + 0.649020209 cosh?(2) (3.6b)

Graphically, the local-maximum in the middle of the double wells was zoomed in by 1000
times, but no difference was observed as shown in Figure 3.5 (b1). When the bottoms of the dou-
ble wells were zoomed in by 1000 times, om% = 0.2ppm) potential-deviation was observed
in Figure 3.5 (b2). Therefore, based on above graphical and algebraical analyses, the deviation be-
tween a Razavy potential and a genuine Double-Morse potential can be approached to a ppm (part
per million) level in this case. Theoretically, the deviation betw®gn, (x) andVx(z) is subject
to exponential decay when the distaried?,) between two bottoms of double-well is extended
linearly. They are not exactly the same, but are similar enough for many applications. Hereinafter,

a Razavy potential will refer to a specified Double-Morse potential with best-fit parameters.
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Figure 3.5: Graphically analysis on the deviation of a genuine Double-Morse-Potential from a
Razavy potential. (a) A Razavy potential is sitting between two Double-Morse potentials with
variousa. (b) A good match between a Razavy potentialof= 22, R, = 2) and a Double-
Morse potential of &« = 2, xy = 2.000167, D = 484). (b1) The tops in the middle of the double
wells are zoomed in by 3 order of magnitude, no difference is observed. (b2) The bottoms of the
double wells are zoomed in by 3 order of magnitude, c(ﬂl&{% = 0.2 ppm) potential-deviation

is observed in maximum.
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3.1.2 Exact Eigenfunctions and Eigenvalues of a Deep Double-Morse Potential

In quantum mechanics, consider the one dimensional time-independent Schrodinger equation of
potentialV,,,, () and energy

d? 2m

a2 (z) — 72 — Vuum(x) — Elg(x) =0 (3.7)
This partial differential equation is exactly solvable for certain energy levels, but not for all the

energy spectrums. The solutions¢dfr) for n low-lying energy levels are exact and simply given

in closed form as[34][36][35]

(n-2)/2
Geven (1) = €72 o) cosh2n) N0 cosh((2 4 1)) (3.8a)
7=0
i (n-2)/2
Poda(r) = €72 o) cosh2n) N gy, sinh((2) + 1)) (3.8b)
7=0

whereCs;;; andS,;, are coefficients.

The above eigenfunctions of even and odd states are simple, however the challenge is how to
obtain the values af’y;.; and.S,,, efficiently. In this work, a matrix scheme was developed for
getting the coefficients as quickly as possible. For a clear interpretation of this matrix scheme, the
coefficientCy, 1, was taken as an example. The basic procedure was as follows.

Firstly, by substituting the polynomial form,,.,,(x) into the Schrodinger Equation 3.7, the
2nd-order derivative of this equation gave rise a complex polynomial hyperbolic equation by

(n—2)/2
[E 4+ n? — 2(n — 1)Ccosh(27)] Z cosh((2j + 1)z)Caj1q
=0

(n—2)/2

Z 2] + 1 COSh((Qj + 1) )CQj.H
Jj=

/2

(n—2)

+2(sinh(2x) Z (25 4+ 1)sinh((25 + 1)z)Caj41 =0 (3.9a)

J=0
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where parametef = n sech(2x).
Then it was important to expand the hyperbolic trigonometric functions of above Equation 3.9a
into terms of hyperbolic functionosh(2x), so that this polynomial equation could be sorted by

terms ofcosh’(2x), and expressed by a matrix form

Y40 (aj0 + bjoC + ¢joC? + djo B) g cosh®(2x)
S (@i + birC + cipC? + dipE)Cajan x| coshi(2z) | =0 (3.9b)
25'1_02)/2(%% +bjn2C+¢ju2C? +dju2 B)Chjp cosh™ =" (2z)

where{a;i, b;x, ¢k, d;i } Were constants whose indexgs i} were integers and ranged frainto
(n — 2)/2. The first column in this matrix was a collection of coefficients. For nontrivial solutions
of ;11 , it was required that each element in the first column equal to zero
(n-2)/2
Z (aji + bjrC + cjpC® + djpE)Cajpq =0 (3.9¢)
§=0
Thus, this coefficient column gave rise the recurrence relations which were expressgdcas a

matrix form as
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(a0o + booC + cooC? + dooE) e (ajo + bjo¢ + ¢jo¢* + djoE)

(an; + bo;C + co;¢? + do,; E) .. (aj; + ;¢ + ¢;;C* + dj; E)
(agn=z +bgn=2C + Con2 P+ dgn2 B) oo (@2 +bjn2(+ ¢u2 (P + djns E)
Cy
X Cypa | =0
Cin-2)2

(3.9d)

Here, the determinant of this square matrix gave rise %Q-aiegree polynomial equation of un-
known E. Therefore, the roots of this polynomial equation were the eigenvalues of energy in even
statey...,(x). Finally, by substituting the knowf' into Equation 3.9c, the coefficient$;, were
given directly.

Therefore, by applying the above computing scheme, a total exactly-computed eigenfunc-
tions and eigenvalues were obtained smoothly, as indicated in Figure 3.6. During the computation
of the exact eigenvalues in such a deep double well, in order to gain sufficient precision the compu-

tation program had to do computations with 48-decimal-digit of precision, as shown in Figure 3.7.

39



500

Wavefunction

100 -

500

Probability ¥y

100 -

|

3 ~2 _1 0 1 2
X (nm)
Figure 3.6: On the top plot, 22 exactly-computed eigenfunctions are listed along their eigenval-

ues of energy. On the bottom plot, the corresponding probability distribution funatiohsre
listed along energy level. The energy level splitting due to quantum tunneling are too small to

distinguished.
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Figure 3.7: A total of 8 pairs wave-functions of energy-level-splitting due to quantum tunneling is
listed on the right-hand side, while the corresponding energy values are listed on the left-hand side.
The energy splitting of the fundamental leyel = 1,2) is extremely small that their significant
figures are going down to at least 24 digits after decimal point.
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3.2 Resonant beats and Revivals from Tunneling States

In case of the wave packet composed 6ftunneling states as shown in above Figure 3.7, billion
years of evolution of the wave packet was required to plot for investigating the whole picture of
revivals. As shown in Figure 3.8 (b), the resonant beating and revival structure of the Double-
Morse oscillator was very complex, and no complete revival was observed in spite of such long
propagating timg¢ = 10?°ps). Remarkably, the revival structure in Figure 3.8 (c) was similar
with the revival of single Morse oscillator. The unusual phenomenon could be easily understood by
observing the initial eigenstatés= 0) shown in Figure 3.7 or Figure 3.8 (a): the eigenfunctions in

the left-hand-side well were out of phase so that they cancelled each other, while the eigenfunctions

in the right-hand-side well were in phase so that they enhanced each other.

1.0 x 105}

Time (ps)
Time (ps)

1=
&
14

Probability (y*)
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;N
=

X (nm) X (nm)

Figure 3.8: Resonant beats and revivals in the Double-Morse well. (a) A total of 8 pairs wave-
functions of energy-level-splitting due to quantum tunneling is listed on the top of left-hand side.
(b) The corresponding wave packet propagation of long fime 10%ps) is plotted on the bottom

of left-hand side. (c) The very beginning momént= 2ps) during a long time wave packet
propagation is captured and plotted.
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3.3 Tsunami-like Resonant Beats and Revivals from Non-tunneling States

In case of the wave packet composedafon-tunneling states as shown in Figure 3.9, the evo-

lution of the wave packet appeared special kinds of order. At the well regions, the wave packet
propagation was of dashed-line shape along the time direction. Meanwhile, at the local top region,
the wave packet was of random large-dotted shape along the time direction. A useful analogy for
describing this kind of striking wave packet dynamics at the local top is the tsunami wave at a

coastal beach. Further analysis of this remarkable dynamics is expected in the future work.

High
.B_ r
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_3 2 ~1 0 1 2 3
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Figure 3.9: Tsunami-like waves at the local top (coastal beach) of a deep Double-Morse well. A
total of 6 non-tunneling wave functions from the= 22 deep Double-Morse well (indicated by
red line) is listed on the bottom. On the top, the corresponding wave packet propagation is plotted

as a function of time and space.
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3.4 Conclusion of Double-Morse Oscillator

In conclusion, with a best-fit parameters scheme developed in this work, a specified double-Morse
potential was developed to have a high fidelity solution of the quasi-solvable Razavy potential.
Exact analytical eigenfunctions and eigenvalues up te 22 energy levels of the double-well
potential were achieved for the first time. Through an efficient matrix scheme, detail of energy
splitting analysis is available for the study of the rich and diverse behavior of quantum dynamics
involving tunneling. A closer examination led to a discovery that the non-tunneling wave functions
had a significant tsunami-like wave effect, which is relevant with the beach-like landscape at the
local top in the double-well potential. This exact computed energy in a deep double-Morse poten-
tial is desired for many applications, because exact solutions of the unperturbed model will make
the perturbation effect easy to handle in practical problems and provide a solid basis for stepping

into the future study for quantum interference and entanglement.
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Chapter 4

Quantum Rotor

The rotation of normal molecules are able to actively radiate far-infrared light or microwave.
Conversely, modern infrared lasers or masers are the powerful tools used to rotate molecular mo-
tors. For instance, recently developed ultra-fast laser pulses have demonstrated impressive capa-
bility to spin up molecular rotors to extreme rotational states [37] [38]. The controllability of this
new optical centrifuge for quantum scale rotors is extending the frontiers of science and technol-
ogy. The quantum rotor described in this work is a quantum mechanical model for describing the

rotational energy of molecular or atomic particles.

4.1 Symmetric Rigid Rotor

For the purposes of investigating basic rotational dynamics, the study scope of this chapter was
focused on rigid quantum rotors in which vibrational and deformation were neglected. Then the

corresponding Hamiltonian of quantum rotor was given simply as:

J2 J2 J2
H="o v % 4.1
21, 21, T oL 41

where{I,, I, I.} were the principal moments of inertia of the rotor body 404, J,, J.} were
rotational angular momentum operators in a body-fixed frame. Due to the fact that the Hamiltonian
of an asymmetric rotofl,, # 1, # I.) was not exactly solvable, and many conventional molecules
are symmetric rotors which have two equal moments of inéftia= I,)), such as”O, and N Hs,

the corresponding Hamiltonian in Equation 4.1 was further simplified as [39]:

R R N et S L i

=51 "o T T oI, BTAREEYS
:iJ-JJr( L —i)ﬂ (4.2)

21, oI, 21,7

This indicated that the rotational eigen energy states could be simply descridggjpw,
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where the quantized numbgmwas given by the relationshipf?¥ = 12;(j + 1)¥, the quantized
numberm; was given by the relationship in the Lab-framiel = Am V¥, and the quantized
numbermp was given by the relationship in the Body-framigl = hmpV¥. In a nut shell,
%L7m3> was a simultaneous eigenfunction.6f J and /., and both the quantizedcomponent
numberm; andmpg are in the range from-j to +; in quantized steps of integer one. Therefore,
there were atotal d2j + 1)(2j + 1) eigenfunctions for a symmetric rotor with giveéfvalue. The
energy value of each eigen energy states was given by

h? I

EGmn) = 530+ 1)+ (5 — 5 @3

4.1.1 Wigner-D Matrix — a Rotation Matrix for Any Spin

In quantum mechanics, an arbitrary rotation action of eigenfunction is described by a quantum
rotation operatoR («, 3, 7), where three angles are defined as the Euler angles. The newly rotated
wave function can be expressed under the angular momentum{hasi$ as:

+j

T,) =R, 5,7) [L) = Y

mr=—]

J > <.i
my my

R(a, 8,7) | 1,) (4.9)

The term({nr\ R(a,3,7)|1,) in this equation is the powerful Wigner-D matrix which was intro-

duced in 1927 by Eugene Wigner [40]:

D, (o, B8,7) = G | R, 8,7) | 4,) (4.5)

The Wigner-D matrix is the general rotation matrix for any spin system with a total angular mo-
mentumj. So the rotational transformation Equation 4.4 can be written as:

+j

W) =R A7) [y =

my=—j

Ty Dh (e, B,7) (4.6)
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The detail result of Wigner-D matrix for rotor is as the following:

(0, 8,7) = e7imertm m )G — mo)h/G T m)IG - m)
k(cosﬁ)2J+mr—m—2k(sin§)m—mr+2k (4.7)

XZ —1—mr K!([j—m—k)!(m—m, + k)'k!

where thek value is running over all values in which all factorials should be non negative.

For illustrating the dynamic feature of the elements in the Wigner-D matrix with various quan-
tum numbern, andm, a value ofj = 10 was chosen so that an array @fj + 1)> = 21 x 21
elements was plotted in each picture of Figure 4.1. Here, the value of each element equaled to the
norm |Df;%m(0, 0, O)\ which was exactly the probability of transformingto m,.. Moreover, the

rotational feature of the Wigner-D matrix was vividly illustrated by the three sequential pictures of

Figure 4.1.
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Figure 4.1: List-point-plotting of Wigner-D matrix with = 10. A total of (25 + 1) = 21 lists is
plotted, while each list contains a total (fj + 1) = 21 points. The amplitude of each point is
the value of the normDJ, (0, 3,0)| with corresponding quantum number. andm. The three

. . . H .2 3w 4w
pictures from left to right are corresponding to various an 2 R e

a7



For a better observation of rotational dynamics of the Wigner-D matrix, a higher value of
j = 30 was chosen, and a smooth density plotting method was applied as shown in Figure 4.2. As

271. 471. - . . - . .
(3 rotated from=f- to <, the density profiles in Figure 4.2 changed from an ellipse to a circle shape.
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Figure 4.2: List-density-plotting of Wigner-D matrix with= 30. A total of (25 + 1) = 61 lists
is plotted, while each list contains a total(@fj + 1) = 61 points. The magnitude of each point is
the value of the normD7, (0, 3,0)| with corresponding quantum number. andm. The three
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4.1.2 Quantum Rotor Wave Function

Due to the fact of quantum uncertainty, a quantum rotor is simultaneously precessing along two
z-axes: onez-axis is of the lab frame and anothetaxis is of its body frame. This means that

a rotor in eigen energy statgbm3> would be found in many different rotational position states

la, B,v), Wherea is the azimuth angle along labaxis, 5 is the polar angle of body-axis, and

~ is the azimuth angle along lalaxis. Therefore, in order to describe the quantum dynamics of
rotor, it is necessary to know the probability of observmg7m8> in the position statéy, 5, ).

For building up the formula betweep, .. ) and|a,3,), an initial position staté0,0,0)
(la=0,8=0,v=0)) was considered, in which a rotor body frame was automatically lined up
with the lab frame. During the coincident moment that the body frame and lab frame shared the
same coordinates, the action of the projector opeda;gggmB projecting to this initial staté), 0, 0)

resulted in exactly an eigen energy steﬁ' m3> |0, 0,0). Then the powerful Wigner-D

mL mp

matrix stepped in to act as a key role in formula formation, as shown in Equation 4.8:

PJ, .. 0,0,0)
J LmB>_ = 2j+1 N/ mLmB ( ﬁ 7) <a7ﬁ77>’07070>

Vz” / da/ smﬁdﬁ/ dy Dy g (@, 8,7) |a, B,7)  (4.8)

where the ternD’ *(a, B,7v) was the complex conjugate of the Wigner-D matrix, and the ro-

mr,mp

tational position state was., 3,v) = R(«a, 3,7) |0,0,0). The amplitude,/2j + 1 D7, . *(c, 3,7)

are quantum eigenfunctions of a rigid rotor, and also known as Quantum Rotor Wave Function [41]

¢rot0r(jamL>mB7a7ﬁa7) < B ’Y| mr, mB> = <07070|R*( ﬁ ’Y) mr, mB>

=\2j+1D,, ... "(aB7) (4.9)

Its squared NOrMY,oior|> = Yrotor “Wrotor Yielded the probability for an observation that a rigid

rotor in a eigen energy staFgL’mB> would be found in rotational position stdte, 3, v) [41].
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4.2 Resonances and Revivals in Quantum Rotor

The wave packet of Equation 4.10 is a superpositioii2gf+ 1) stationary rotor waves afig

values is in the range fromj to +j

i E(] m )
\Ij(jymL7a7ﬁa’% Z wrotor jamLamBy 757 ) .
mp=—j
E(j»ms)t
=/2j+1 Z DI, (e By e TR (4.10)
mp=—j

where the eigen enerdy(j, mp) is given in Equation 4.3. Here, for studying the essential feature

of quantum dynamics, the initial condition of = 0,3 = 7) was applied in the whole chapter.

In quantum mechanics, there are two kind of angular momentuorbital angular momentum
Jorbitar @Nd SPIN angular momentumy,,. Orbital angular momentum is corresponding to the
rotating trajectory of quantum object, such as electron orbits the nuclear axis. While spin angular
momentum is an intrinsic quantum mechanical form of angular momentum observed in quantum
object only, such as the intrinsic spin of electron is characterized by quantum ngmbe'rs
noteworthy that spin has no analog in classical mechanics. So that the total angular momentum
(7 = Jorbital + Jspin) IN quantum rotor will be falling into two classes: integer spin system and

half-integer spin system.

4.2.1 Integer Spin — Boson System
4.2.1.1 Spinj =3

For illustrating the properties of integer-spin rotor waves, a simpe3 rotor was considered. In
case of the list-plot of quantum rotor waves, as indicated in Figure 4.3,jeactD3 s (0,5,7)
was plotted as a function of angjeén a range oPr. Forj = 3, atotal of(2j+1) = 7 differentmp
values was used, so that there w&nwave functions listed along: values in each list plotting

graph. The three graphs from left to right corresponded to the real part of rotorRvawé the
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imaginary part of the rotor wavém/[], and the probability of rotor positiont*:). At the same
time, as indicated in Figure 4.4, the energy-value-based list-plot of quantum rotor waves with

v = Dj

3,mp

*(0,%,~) were plotted as a function of angile A total of 7 wave functions was listed
along their energy values in each list plotting graph (ehlyaves are observed because of energy
degeneracy). The three graphs from left to right corresponded to the real part of rotoRwaye

the imaginary part of rotor waven[¢], and the probability of rotor position*.
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Figure 4.3: Thenp-value-based list-plot of quantum rotor waves that each D3, *(0,%,7)

is plotted as a function of angte A total of 7 wave functions are listed alongp values in each

list plotting graph. The three graphs from left to right are corresponding to the real part of rotor
wave Relt], the imaginary part of rotor waven[v)], and the probability of rotor position*.

j= 3 j= 3 j= 3
(fﬂz,= 3] ('ﬂz.= 3] (”‘L— 3)
146353~ —  ——  — 146353 ——  ———  —— 146353
g s 5 s 5 s
= 2 5 E s 5
E I i z
@ e @ v @ =
= 120601} > T = 120601 [ ~| 2wl 120601 =2
- - - £ » — - £ » 2
)] = B0 =
5 & = g £
&5 < 5 < &
1.0515 1.0515 \ﬁ 10515
1.b ! ! . L 1.k T T T 1 1.b . ! ! |
0 z n 3z 2r 0 z n 3z 2x 0 z T 3z 2
2 2 2 2 2 2
Angle y Angle y Angle y
Figure 4.4: The energy-value-based list-plot of quantum rotor waves that €ach

D§7mB*(O, Z,7) is plotted as a function of angle A total of 7 wave functions are listed along
their energy values in each list plotting graph (only 4 waves are observed because of energy degen-
eracy). The three graphs from left to right are corresponding to the real part of rotorRuave

the imaginary part of rotor waven[¢], and the probability of rotor position*.
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In case of the polar plot of quantum rotor waves, as indicated in Figure 4.5¢eacﬁ§7m8*(0, 5,7)
was plotted as a function of anglein a range oRx. Forj = 3, there was atotal d2j + 1) =7
differentmpg values, ther wave functions in the polar plot were listed along with; values in
each row of graph-list. The three rows from top to bottom corresponded to the real part of rotor
wave Re[i], the imaginary part of rotor wavém/[i)], and the probability of rotor positioti*.

The dashed circle in each polar plot symbolized the rotor body itself.

It was clearly shown in the bottom row of Figure 4.5 that the probability of rotor position in
each level ofng was a perfect circle. It should be noted that the symmetry of rotor was exactly
equivalent to the situation of quantum wave in a ring.

For illustration purposes, all the quantum rotor waves were polar plotted together in one single
graph, as shown in Figure 4.6. The radial axis in each graph of Figure 4.6 was the energy level of
rotor wave, but was not in exact energy scale.

The wave packet functio (j = 3, m; = 3, = 0,8 = 7,,t) was then plotted as function
of angley and timet, as illustrated in Figure 4.7. The propagation of wave packet was a symmetric

pattern.
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Figure 4.6: Graph on the left is a collection of all the real part of rotor wateg)| that polar
plotted in Figure 4.5, while graph on the right is a collection of all the imaginary part of quantum
rotor waves/m/[¢] that polar plotted in Figure 4.5. The radial axis in each graph is referred to as
the energy level of rotor wave (not in exact energy scale).
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Figure 4.7: The propagation of rotor wave packetldf = 3,m; = 3,a = 0,8 = 3,7,t). (a)
The wave packetV| is propagated along the time-steps. (b) The density map of the wave packet
|| as a function of angle and time. (c) The 3D plot of the wavepagckeas a function of angle

and time.
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4.2.1.2 Spinj =10

In case of highe)j systems, such as the= 10 spin system, a richer quantum dynamic picture was
expected. As indicated in Figure 4.8, each= D%&mB*(O, Z,7) was list-plotted as a function of
angley in arange oRr. Forj = 10, there were a total dRj+1) = 21 differentm g values, so that
there were1 wave functions listed along: z values in each list plotting graph. The three graphs
from left to right corresponded to real part of rotor wake]v)|, the imaginary part of rotor wave
Im[y], and the probability of rotor position*i>. At the same time, as indicated in Figure 4.9, the
energy-value-based list-plot of quantum rotor waves witk- Digva*(O, 7,7) was plotted as a
function of angley. A total of 21 wave functions were listed along their energy values in each list
plotting graph (onlyl 1 waves are observed because of energy degeneracy). The three graphs from
left to right corresponded to the real part of rotor wave|, the imaginary part of rotor wave
Im[y], and the probability of rotor position* .

In case of the polar plot of quantum rotor waves, as indicated in Figure 4.10,7eatch

DlO

10,mp

*(0,%,~) was plotted as a function of anglein a range of2z. Forj = 10, there were
a total of (25 + 1) = 21 differentm g values, so that there wegad wave functions in polar plot
listed alongn g values. The number of nodes of the rotor wave was proportional taghealue.

For illustration purposes, all the quantum rotor waves were polar plotted together in one single
graph, as shown in Figure 4.11. The radial axis in each graph of Figure 4.11 was referred to as the
energy level of rotor wave, but was not in exact energy scale.

The wave packet functiol (j = 10,m; = 10,a = 0,3 = 7,~,t) was plotted as a function
of angley and timet, as illustrated in Figure 4.12. The propagation of wave packet was a symmet-
ric pattern. The propagation of the wave packet was in symmetric pattern. A closer examination
of fractional revival in Figure 4.12 led to a remarkable discovery that the quantum revival struc-
ture was nearly perfect match with the Farey-sum sequébce;, £, 4, %, 1,2 1 2,2, 2.}, as

denoted in the symmetric resonant beats in Figure 4.13.
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The complete revival time of integer-spin rotor wave packet is given simply by

2 o
Trew = — = y y h 411
Aw =BG —EG.0) (4.11)

where Aw means the minimum beat frequency between any two eigen frequencies of the rotor

states. According to the eigen energy Equation 4.3, the minimum energy gap occurs between the

mp = 0 andmp = 1 energy levels, so that the minimufw = ZUL2E00 a5 shown in bottom
of Figure 4.9.
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Figure 4.8: Thenz-value-based list-plot of quantum rotor waves that each Djg,,,.*(0, 5, 7)

is plotted as a function of angte A total of 21 wave functions are listed alongy values in each

list plotting graph. The three graphs from left to right are corresponding to the real part of rotor
wave Rel], the imaginary part of rotor waven[v)], and the probability of rotor position*.
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Figure 4.9: The energy-value-based list-plot of quantum rotor waves that eachk-
Digva*(O, %.7) is plotted as a function of angte A total of 21 wave functions are listed along
their energy values in each list plotting graph (ohlywaves are observed because of energy de-
generacy). The three graphs from left to right are corresponding to the real part of rotor wave

Re[y], the imaginary part of rotor waven[¢y], and the probability of rotor position* .
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( i = 10]
mp = 10

Time (ps)
|1

Figure 4.12: The propagation of wave packglj = 10,m; = 10,a = 0,3 = 7,v,t). Onthe top
is a 2D density plot of the norm’|. On the bottom, is a 3D plot of the norp|.
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Figure 4.13: Various resonant beats during one complete revival pEriad
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4.2.2 Half-integer Spin — Fermion System

For a half-integer spin system, one of its striking features is that its complete rotation in the range
of 47 instead of the regula2r of integer spin system. In order to build a concrete picture of
the unusualir rotation, Figure 4.14 showsr rotation in sequential regul&r rotations. The

detail of a completédr rotation is distinguished by these two reguarrotations, as illustrated in

Figure 4.14 (a-b).

& 3 5
I ! 1
= & =
~ e =~
L 2] o
= 2 =
g
2 E 2
Amplitude of Re[y] Amplitude of Re[y]
(ms= 3) (ms = 3)
& < =
I | 1
= & e
~ = ~
HJ %
H E H
-
3 'IT_:' I I:‘_: 3 T
Amplitude of Im[y] Amplitude of Im[y] Amplitude of Im[y]

Figure 4.14: A sequential polar plots of quantum rotor wave 6f3/2 (v = DggmB*(O, 5:7))-

On the top row: (a) The real part of rotor wa¥ge[v)] is plotted as function of; in the range of
(0—2m). (b) The real part of rotor wavBe|v)| is plotted in they range of(2r —4). (c) A complete
rotation of the real part of rotor wavRe[y)] is plotted in a complete range of(0 — 4r). On the
bottom row: (d) The imaginary part of rotor wave:[¢/] is plotted as function of in the range of
(0 — 2m). (e) The imaginary part of rotor waven[v] is plotted in they range of(2r — 4m). (f)
A complete rotation of the imaginary part of rotor walie[¢] is plotted in a complete range of
(0 — 47). The dashed circle in each polar plot symbolizes the rotor body itself.
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4221 Spinj =2

For illustrating the properties of half-integer-spin rotor waves, a sinjpte g rotor is con-
sidered. In case of the listed plot of quantum rotor waves, as indicated in Figure 4.15, each
Y = DggmB*(O, ,7) was plotted as a function of anglein a range ofdwr. Forj = g a to-
tal of (25 + 1) = 6 differentmp values, so that there weéewave functions are listed along with
mp values in each list plotting graph. The three graphs from left to right corresponded to the real
part of rotor waveRe[y], the imaginary part of rotor wavém/[i)], and the probability of rotor
positiony*.

At the same time, as indicated in Figure 4.16, the energy-value-based list-plot of quantum rotor
wavesy) = Dgﬁm*(o, %,7) were plotted as a function of angle A total of 6 wave functions
were listed along their energy values in each list plotting graph (dwigves are observed because
of energy degeneracy). The three graphs from left to right corresponded to the real part of rotor
wave Relt], the imaginary part of rotor waven[¢)], and the probability of rotor position*.

In case of the polar plot of quantum rotor waves, as indicated in Figure 4.17,7eaeh
ng;m;(o, %.7) is plotted as a function of angte in a range ofir. Forj = 5/2, a total of
(27 + 1) = 6 differentmp values, so that there aéewave functions in polar plot are listed along

mp values. The number of node of the rotor wave is proportional witmtheralue.
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Figure 4.15: Then-value-based list-plot of quantum rotor waves that eaeh D??i,m; 0,2,7)

is plotted as a function of angte A total of 6 wave functions are listed alongg values in each

list plotting graph. The three graphs from left to right are corresponding to the real part of rotor
wave Re[v], the imaginary part of rotor waven[i], and the probability of rotor position*:).
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Figure 4.16: The energy-value-based list-plot of quantum rotor waves that ©ack
Dg’g,mB*(O, %,7) is plotted as a function of angte A total of 6 wave functions are listed along
their energy values in each list plotting graph (oBlyaves are observed because of energy degen-
eracy). The three graphs from left to right are corresponding to the real part of rotorRuave

the imaginary part of rotor waven[¢], and the probability of rotor position*.
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4.2.2.2 Spinj =93

In case of highey systems, such as the= 9% spin system, a richer quantum dynamic picture was
expected. As indicated in Figure 4.19, eachk- D}SMB*(O, Z,) was list-plotted as a function of
angley in a range of2r. Forj = 9%, there were a total of2j + 1) = 20 differentmpg values,

so that there wer20 wave functions listed along witlu g values in each list plotting graph. The
three graphs from left to right corresponded to the real part of rotor Wa|, the imaginary part

of rotor wavel/'m[)], and the probability of rotor position*«. At the same time, as indicated in
Figure 4.20, the energy-value-based list-plot of quantum rotor waveng;g”mB*(O, Z,7) was
plotted as a function of angte A total of 20 wave functions were listed along their energy values
in each list plotting graph (only0 waves were observed because of energy degeneracy). The three
graphs from left to right corresponded to the real part of rotor wiawie)], the imaginary part of
rotor wavelm/[i)], and the probability of rotor position*.

For illustration purposes, all the quantum rotor waves were polar plotted together in one single
graph, as shown in Figure 4.22. The radial axis in each graph of Figure 4.22 was the energy level
of the rotor wave, but was not in exact energy scale.

The wave packet functio®(j = 9.5,m; = 9.5, = 0,8 = 7,~,t) was plotted as function
of angle~y and timet, as illustrated in Figure 4.23. The propagation of the wave packet was in
symmetric pattern. A closer examination of fractional revival in Figure 4.23 led to a remarkable
discovery that the quantum revival structure was nearly perfect match with the Farey-sum sequence

0111 21

1.5 1 30 551 » @s denoted in the symmetric resonant beats in Figure 4.24.

The complete revival time of half-integer-spin rotor wave packet is given simply by
2w 2w

Trow = — = - —h 4.12

where Aw means the minimum beat frequency between any two eigen frequencies of the rotor
states. According to the eigen energy Equation 4.3, the minimum energy gap occurs between the

mp = 1/2 andmp = 3/2 energy levels.
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Figure 4.19: Then g-value-based list-plot of quantum rotor waves that each Dg;g,m;m, Z:7)
is plotted as a function of angte A total of 20 wave functions are listed alongy values in each
list plotting graph. The three graphs from left to right are corresponding to the real part of rotor

wave Relt], the imaginary part of rotor waven[¢], and the probability of rotor position*.
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Figure 4.20: The energy-value-based list-plot of quantum rotor waves that ©ack
Dg?.,.7(0,%,7) is plotted as a function of angle A total of 20 wave functions are listed along
their energy values in each list plotting graph (ohlywaves are observed because of energy de-
generacy). The three graphs from left to right are corresponding to the real part of rotor wave
Re[y], the imaginary part of rotor waven[¢], and the probability of rotor position* .
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Figure 4.21: Polar plot of quantum rotor waves that eack Dj?2, *(0,7,v) is plotted as a
function of angley in a range ofdr. A total of 20 polar plots are listed along.z values. Each
polar plot is corresponding to the real part of rotor wdeg:)|. The dashed circle in each polar
plot symbolizes the rotor body itself.
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Figure 4.22: Graph on the left is a collection of all the real part of rotor wakes| that polar
plotted in Figure 4.21, while graph on the right is a collection of all the imaginary part of quantum
rotor waves/m/[i] that polar plotted in Figure 4.21. The radial axis in each graph is referred to as
the energy level of rotor wave (not in exact energy scale).
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Figure 4.23: The propagation of wave packgtj = 9.5,m; = 9.5,a = 0,3 = 7,~,t). On the
top is a 2D density plot of the norifi’|. On the bottom, is a 3D plot of the norp|.
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Figure 4.24: Various symmetric resonant beat during one complete revival gérjod
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4.3 Conclusion of Rotor Dynamics

In conclusion, quantum rotor wave functions based upon Wigner-D matrix were applied to inves-
tigate the quantum resonance and revivals that occur in experimentally accessible spin systems.
Interesting physical effects in quantum rotors between half-integer spin and integer spin systems
was observed that showed effects of symmetry. This study will pave the way for more rich dy-
namic behaviors in asymmetric tops that include dynamic tunneling between various equivalent
energy surface topography for asymmetric quantum rotors. A key point is that the quantum re-
vivals in the rotor systems exhibited number-information aspects of surprisingly simple Farey-sum

and Ford-circle geometry.
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Chapter 5

Conclusion

This investigation of quantum resonant beats and revivals in Morse oscillators and Symmetric
rotor was provided a deeper insight into the physical reality of quantum wave interference. Indeed.
advanced analytical and numerical tools were developed to efficiently visualize and predict the
phenomenon of interference beats and revivals in more detail than has been reported before.

For the Morse oscillator, the exact analytical wavefunctions of the Morse oscillator allowed an
detailed analysis of the rich behavior of the quantum dynamics. Based on the key parameter
relating with the gap between the highest bound eigenstate and the dissociation energy, a concise
way for searching the exact complete revival tifyg, of the Morse oscillator was given for the first
time. The applications of two fundamental peridds,, _ye.: aNd7,,.;,_ ., allowed the discovery
of the relationship between Fibonacci sequence and the Morse complete revival time. Particularly,
the minimum periodl;,.;,_..., suggested a quantized period concept that the complete period is
made of integer numbers of the fundamental period in the quantum world of the Morse oscillator.
A closer examination led to a discovery that the quantum resonance and revival structure had a
curious connection with the Farey-sum structure, which was illustrated with the classical Ford
circles. This Fibonacci-Farey-Ford geometry should provide a further step towards a systematic
understanding of the quantum wave packet dynamics.

For double-Morse oscillators, with a best-fit parameters scheme, a specified double-Morse po-
tential was developed to have high fidelity of the quasi-solvable Razavy potential. So that exact
analytical eigenfunctions and eigenvalues up te 22 energy levels of the double-well potential
are achieved for the first time. Through an efficient matrix scheme, fine detail of an energy split-
ting analysis was available for the study of the diverse behavior of quantum dynamics involving
tunneling. A closer examination led to a discovery that the non-tunneling wave functions had a
significant tsunami-like wave effect, which is relevant on the local top (coastal beach landscape) in
the double-well potential. This exact computed energy in a deep double-Morse potential is desired

for many applications, because exact solutions of the unperturbed model will make the perturba-
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tion effect easy to handle in practical problems, and has set up a solid basis for the future study of
guantum interference and entanglement.

For quantum rotors, quantum rotor wave functions based upon Wigner-D matrix were applied
to investigate the quantum resonance and revivals that occur in experimentally accessible spin sys-
tems. Interesting physical effects in quantum rotors between half-integer spin and integer spin
systems was observed to show the effects of symmetry. This study will pave the way for under-
standing colorful dynamic behaviors in asymmetric tops that include dynamic tunneling between
various equivalent energy surface topography for asymmetric quantum rotors. A key point was
that the quantum revivals in the rotor systems exhibited number-information aspects of surpris-
ingly simple Farey-sum and Ford-circle geometry.

Notably, the novel features of the resonant states emerging from these quantum models are
leading to interesting findings, such as the possible university of Farey-sum revival structures. Im-
portantly, these simple quantum models will provide remarkable examples of naturally occurring
and experimentally accessible systems, in which the resonance and revival of quantum matter wave

may eventually lead to great applications for quantum information processing and computing.
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Appendix A

Description of Research for Popular Publication

Exactly prediction of period is extremely important for many applications in the advancement
level of civilization in human history. In ancient time, accurate dated celestial events are essential
things for establishing a coherent society, such as lunar phase calendar for cultivating crops. Par-
ticularly, the Moon eclipse and Solar eclipse were vital for religious, political, and social purposes,
so that, the prediction of eclipse period is of great challenges for ancient astrologers. In modern
time, advanced microelectronic and photonic devices are all based on the novel quantum wave me-
chanics, so the prediction of quantum wave events is of great interests for cutting edge technology.
However, the exact prediction of quantum wave revivals is of great challenges for quantum scien-
tists. Now, for the first time, the exact prediction of quantum wave events in anharmonic Morse
oscillator has been achieved by a concise formula.

“Consider an analogy with macro lunar event to describe micro quantum event, the achieve-
ment of my formula is likely to develop an exact prediction of moon eclipse, whereas existing
publications are only of moon phase forecasting,” says Alvason Zhenhua Li, a recent Ph.D. gradu-
ate at University of Arkansas. “I am quite amazed that the formula | made stands up and gives rise
precise results for any parameters. | almost gave up during this long-haul researching journey.”

His prediction method is of building block concept — In this quantum world, there is existing
the minimum or fundamental period, any completely period is made of integer numbers of the
fundamental period. Thus, any complete period in the quantum world is quantized. Alvason thinks
his strategy for searching exact period prediction may be applied in other areas, such as stock
market trend and earthquake prediction.

“More interesting thing is that there are two kinds of building block for the same period,” says
Alvason. “A useful analogy to this fact is that we can pay the same product by two basic monetary
units, such as applying either U.S. dollar or Chinese yuan. The fantastic thing is that the exchange
rate between these two currencies is exhibiting Fibonacci ratio when they are used in the quantum
world.”

Within a fundamental period, the resonant pattern of the quantum wave packet will exhibit the
same as the geometric pattern of Ford circles in classical daily world. “The beauty of this research
is that modern quantum resonant pattern can be traced and outlined by ancient Greek geometry,”
says William Harter, a theoretical physicist specializing in molecular dynamics and spectroscopy
at University of Arkansas. “Remarkably, this Ford circles or Farey-sum feature is sharing among
several quantum systems including quantum oscillators and rotors.

“My cooperator in physics at Caltech suggests this fantastic research to be published in Physical
Review Letters”, says Wenying Shou, a professor of the basic science division at FHCRC center,
Seattle.

Both William Harter and Alvason Li suggest that this simple quantum model will provide re-
markable examples of naturally occurring and experimentally accessible systems, in which the
resonance and revival of quantum matter wave may eventually lead to great applications for quan-
tum information processing and computing.
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Appendix B

Executive Summary of Newly Created Intellectual Property

A total of four new intellectual property items were created and developed during this disser-

tation research:
1. Anidea or concept of quantized period in certain quantum world.

2. A method for exactly predicting revival period in quantum resonance and revivals of the

Morse oscillator.

3. Adiscovery of Farey-sum structure and Ford circles geometry in the quantum resonance and

revivals of the Morse oscillator and quantum rotors.

4. A best-fit-parameter scheme and the corresponding efficient matrix scheme for the exact

solutions in the Double-Morse oscillator.
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Appendix C

Potential Patent and Commercialization Aspects of Each Numbered Item in Appendix B
C.1 Patentability of Intellectual Property

First, the listed items were considered from the perspective of whether or not the item could be

patented.

1. The idea or concept of quantized period can not be patented, because it is just a new scientific

term.

2. The method developed in this research to predict the completely revival time in the quantum
resonance and revivals of the Morse oscillator will not be patented, because the detailed

application scheme is required for the patent processing.

3. The discovery of Farey-sum structure and Ford circles geometry in the quantum resonance
and revivals will not be patented, because the detailed application scheme is required for the

patent processing.

4. The best-fit-parameter scheme and the corresponding efficient matrix algorithm for the exact
solutions in the Double-Morse oscillator will not patented, because the detailed application

scheme is required for the patent processing.

C.2 Commercialization Possibilities of Intellectual Property

Then, the following listed were considered from the perspective of whether or not the item should

be patented.
1. The idea or concept of quantized period can not be patented.

2. The method developed in this research to predict the completely revival time in the quantum
resonance and revivals of the Morse oscillator should not be patented. Because the detailed

application scheme is lacking.
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3. The discovery of Farey-sum structure and Ford circles geometry in the quantum resonance

and revivals should not be patented. Because the detailed application scheme is lacking.

4. The best-fit-parameter scheme and the corresponding efficient matrix algorithm for the ex-
act solutions in the Double-Morse oscillator should not be patented. Because the detailed

application scheme is lacking.

C.3 Possible Prior Disclosure of Intellectual Property

The following items were discussed in a public forum that could impact the patentability of the

listed intellectual property.

1. The idea or concept of quantized period has been discussed in an international conference,

however, the detail of method has not been published.

2. This newly developed method of period prediction has been discussed in an international

conference, however, the detail of the method has not been published.

3. The discovery of Farey-sum structure and Ford circles geometry in Morse oscillator has
been discussed in two international conference (the APS March Meeting 2012 and the In-
ternational Symposium on Molecular Spectroscopy 2012), however, the detail of analysis
has not been published. The discovery of Farey-sum structure and Ford circles geometry in

half-integer spin system has not been discussed in any forum.

4. The best-fit-parameter scheme and the corresponding efficient matrix algorithm for the exact
solutions in the Double-Morse oscillator has been discussed in an international conference
(the International Symposium on Molecular Spectroscopy, 67th meeting 2012), however, the

detail of scheme and algorithm has not been published.
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Appendix D

Broader Impact of Research

D.1 Applicability of Research Methods to Other Problems

The strategy and approach for developing exactly prediction of quantum resonant beat and revival
period were considered valuable in any prediction or forecast system. In principle, any system has
its unique harmonic or resonant frequency so that the basic philosophy of this research could be

applied elsewhere.

D.2 Impact of Research Results on U.S. and Global Society

The idea or concept of quantized period is created for the first time, will have profound impact on
U.S. and global society. In this dissertation research, the author proposed and developed a creative
idea that in a certain quantum world, there is existing a minimum or fundamental period, any
completely period is made of the fundamental period integrally. Thus, the completely period of a
guantum world is quantized. For this reason, a instant method for global knowledge distribution

of this dissertation contents should be considered.

D.3 Impact of Research Results on the Environment

This research method is purely theoretical way that does not have any unfavorable or harmful
environmental impact. However, this research method of double-well or bistable system may

potentially be applied to model the environment problems.
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Appendix E

Microsoft Project Printout of Microelectronics-Photonics PhD Degree Plan
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Appendix F

Identification of All Software Used in Research and Dissertation Generation

Computer #1:
Model Number: MacBook Pro
Serial Number: W88494381GN
Location: Laptop

Owner: A. Zhenhua Li

Software #1:
Name: Mathematica 8 for Students
Purchased by: A. Zhenhua Li
License #: 3226-6762

Software #2:
Name: Microsoft Office 2008 for Mac
Purchased by: A. Zhenhua Li
Product ID #: 92464-498-6887922-12071

Software #3:
Name:BaKoMa Tex
Purchased by: A. Zhenhua Li
Serial Number: 18727P1584
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Appendix G
All Publications Published, Submitted and Planned

Publications in Journal Papers

First Author:

1.

“Quantum Revivals of Morse Oscillator and Fibonacci-Farey-Ford Geometry",
AlvasonZherhua Li, William G. Harterjn reviewing and publishing processing, 2013.

2. “Holed Nanostructures Formed by Aluminum Droplets on a GaAs Substrate',

AlvasonZherhua Li, Zhiming M. Wang, Jiang Wu, and Gregory J. Salamo.

Nano Res., 3: 490-495 (2010).

3. “Evolution of Holed Nanostructures on GaAs",

AlvasonZherhua Li, Zhiming M. Wang, Jiang Wu, Yanze Xie, Kim A. Sablon, and Gregory

J. Salamo.

Multiple First Authors:

1. “Critical size of self-propelled motion of droplets on GaAs (100) surface",Jiang Wu,

G.2

Zhiming M. Wang AlvasonZ. Li, Mourad Benamara, Jihoon Lee, Sabina D. Koukourinkova,
Eun Soo Kim, and Gregory J. Salamb.Appl. Phys. 112, 043523 (2012)

. “Nanoscale Footprints of Self-Running Gallium Droplets on GaAs Surface" Jiang Wu,

Zhiming M. Wang,AlvasonZ. Li, Mourad Benamara, Shibin Li, Gregory J. Salan®.0S
ONE 6(6): e20765. doi:10.1371/journal.pone.0020765 (2011)

. “On the Secondary Droplets of Self-Running Gallium Droplets on GaAs Surface"Wu,

Jiang; Wang, ZhimingM.; Li, Alvason Z.; Benamara, Mourad; Salamo, Gregory ACS
Applied Materials & Interfaces, 3, 6, 1817-1820 (2011)

Publications in Conference Abstracts and Contributed Talks

“Resonace and revival in Quantum Rotors: Comparing half-integer and integerlafen,
national Symposium on Molecular Spectroscopy, 68th Meeting (2013)

“Resonace and revival in Morse Oscillator and double Morse Well Dynantidstnational
Symposium on Molecular Spectroscopy, 67th Meeting (2012)

. “Quantum Revivals of the Morse Oscillator in Position Space and Momentum Spawcets

ican Physical Society March Meeting (2012)

“Nanorings of Aluminum Droplet Epitaxy on GaAs Substratdgterials Research Society
Fall Meeting (2009)
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Appendix H

My Source Codes in Mathematicd™
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