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Abstract

Analytical eigenfunctions and eigenvalues for the Morse oscillator were applied to investigate

the quantum resonant beats and revivals of wave packet propagation. A concise way for exact

prediction of the complete revival period of the Morse oscillator was given for the first time. It was

suggested that any complete period was made of integer numbers of the minimum or fundamen-

tal period. Within the fundamental period, the anharmonicity of this oscillator appeared to cause

interesting space-time phenomena that include relatively simple Farey-sum revival structures. In

addition, a simple sum of two Morse oscillators led to a double-Morse well whose geometric sym-

metry provided analytical eigenfunctions and eigenvalues for certain low-lying energy levels. The

quantum tunneling between the double-Morse well significantly affected the resonant beats and

revivals local to each well, and gave rise to interesting tsunami-like waves in the middle of the

double well. Furthermore, quantum rotor wave functions based upon Wigner-D matrix were ap-

plied to investigate the quantum resonant beats and revivals that occur in experimentally accessible

spin systems. Interesting physical effects in quantum rotors between half-integer spin and integer

spin systems were observed to show effects of symmetry. Essentially, the quantum revivals in these

quantum systems exhibited number-information aspects of surprisingly simple Farey-sum and Ford

circles geometry. Such quantum dynamics will provide a physical insight to further develop mat-

ter wave packet technology, and might have applications for quantum information processing and

quantum computing.
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Chapter 1

Introduction

The study of wave packet dynamics has a long history, and has more recently been acceler-

ated by modern computer technology that provides better ways to visualize spatial and temporal

behaviors. Wave packet dynamic systems have been studied for over 200 years in a wide scope:

from classical tsunami waves to electromagnetic non-dispersive solitary waves. In 1926, Erwin

Schrodinger developed quantum matter wave for the solutions of Schrodinger’s equation [1]. Since

then, the dynamic behaviors of quantum wave packets have been active research topics in atomic

physics and molecular chemistry. In a theoretical way, quantum wave packet studies served as the

solid steppingstone to the birth of quantum optics in 1963 [2], where Glauber’s work on the quan-

tum theory of optical coherence was based on the coherent states of quantum harmonic oscillator

in Figure 1.1. This work led him to become the 2005 Nobel Laureate in Physics [3].

A coherent state is a remarkable example for the correspondence principle that connects clas-

sical and quantum physics. The wave packet of this coherent state keeps the same shape as the

ground state, but its time propagation is concentrated along the classical trajectories of a classi-

cal harmonic oscillator. The moving path of a coherent state of quantum harmonic oscillator is

illustrated in Figure 1.1 (d-f). The coherent states are important for comparing the wave-like and

particle-like behavior of quantum systems.

In an experimental way, a milestone of the quantum wave packet study was reached in 1987

through Zewail’s work on the transition states of chemical reactions using femto-second(10−12s)

spectroscopy [4]. His investigation of ultra-fast chemical phenomena was based on the observation

of coherent wave packet motion between covalent and ionic states. This work marked the birth of

femto-chemistry, and led him to become the 1999 Nobel Laureate in Chemistry [5]. The gener-

ation of vibrational wave packet of molecular electrons is described in Figure 1.2. In the case of

monochromatic light as shown in Figure 1.2 (a), only one stationary state is excited. While, in

case of femto-second laser pulse as shown in Figure 1.2 (b), the intrinsic bandwidth of this ultra-

short laser pulse is broad enough to excite several stationary states simultaneously. These excited
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Figure 1.1: Coherent state of quantum harmonic potential: (a) A branch of eigenfunctions in the
potential well (red-color-line) is scaled by the Poisson-distribution (dotted-line) for keeping the
minimum-uncertainty, and (b) superposed together to form a coherent eigenfunction-wave-packet,
which establishes (c) the corresponding coherent probability-wave-packet. (d) A branch of the
coherent probability-wave-packets as a function of time-step. (e) The probability density map of
the coherent wave packet as a function of space-time. (f) The 3-dimensional (3D) probability
distribution map of the coherent wave packet as a function of space-time.
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electronic stationary states are superposed together to form a propagating wave packet, as shown

in the top of Figure 1.2 (b). The resulting wave packets can be seen as a linear combination of the

oscillator’s eigenfunctions

ψ(x, t) =
N∑

n=0

cnφn(x)e−iEnt/~ (1.1)

whereφn(x) denotes then-th order eigenfunction,cn stands for then-th order constant coefficient,

e−iEnt/~ is the complex exponential factor related with timet. The wave packets established by

various ultra-fast light pulses are applied for a detailed understanding of molecular dynamics,

which is of fundamental interest in physics and chemistry.

Figure 1.2: Generation of quantum dynamic wave packet in potential well (red-color-line). (a)
Monochromatic light is able to excite only one stationary state. (b) An ultra-fast laser pulse is
capable to excite a branch of stationary states that superpose into a wave packet.
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In the late 1970s and the early 1980s, quantum wave packet studies began with revivals in

cavity quantum electrodynamics simulations by Eberly [6] and computer simulations of molecu-

lar vibrational dynamics [7, 8]. With the birth of ultra-fast laser spectroscopy in the late 1980s,

it became possible to observe quantum wave packet resonance and the localized periodic mo-

tion in many experimental situations [4, 9, 10] involving atoms, molecules, and cavities [10, 11].

Considerable progress has been made in understanding the physics and chemistry of ultra-fast

spectroscopy and laser-molecular interaction [11, 12]. Many of existed research groups focus on

real-time experimental observation and simulation. For instance, a quantum dynamics group in the

Max-Planck-Institute simulated its real-time observation of vibrational revival in laser-molecular

interaction [10] , whereas numerical simulation exhibits qualitative agreement with its laser-induce

H2 ionization experimental data, as shown in Figure 1.3.

However, a relatively small fraction of the research involves aspects of number-theory or

information-theory that shows up in the space-time complexity of quantum wave packet dynamics.

This is still a largely unexplored field. In 2001, Harter published two pioneering papers addressing

the dynamics of wave-packet in a simple quantum rotor system withCn-group and Farey-sum

analysis [13, 14], his works were cited by Schleich’s group as a potential application for factoriz-

ing numbers [15, 16]. In the past decade, the examination of number-information was limited to

wave packets confined by one dimensional infinite-square-wells or flat ring potentials, as shown in

Figure 1.4. In 2011, the author demonstrated that anharmonic Morse potential well exhibits similar

Farey-sum arithmetic revival structure in its wave packet propagation [17]. This work motivated

the author to do a closer examination of the resonance and revival phenomena among various quan-

tum systems, especially the double-Morse potential wells and the dynamic quantum rotors. This

new work is the topic of this dissertation and should provide a further step towards a systematic

understanding of the rich and diverse behavior of quantum wave packet dynamics.
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Figure 1.3: Research approach from Ullrich’s group in Max-Planck-Institute. (a) Numerical cal-
culated probability plot ofH+

2 wave packet propagation. (b) The same calculated probability plot
as (a) but weighted by the ionization probability. (c)H+

2 wave packet is rebuilt from experimental
data of laser-ionization [10].
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Figure 1.4: Research approach from Harter’s group at University of Arkansas. The Farey-sum
structure in the quantum revivals of a Bohr ring [13].

6



Chapter 2

Morse Oscillator

The Morse oscillator is representing a simple but realistic choice among various anharmonic

potentials [18]. Experientially, the Morse-type anharmonic oscillators have been applied widely

for the description of covalent molecular bonding, and some important dynamic aspects of this

anharmonic oscillator have been studied [19, 20, 21, 22, 23]. Mathematically, the Morse potential

is one of the simplest models for describing the anharmonicity of real chemical bonding, and is

given by

VM (x) = D(1 − e−αx)2 (2.1)

In this one dimensional model of Equation 2.1, the coefficientD is the bond dissociation energy

where the potential approaches its maximum inflection value asx approaches+∞, it relates to

both harmonic frequencyωe and anharmonic frequencyωχ, and is found by the equation

D =
ωe

2

4ωχ

~ (2.2)

The constant parameterα regulates the “width” of the Morse potential well by associating the

reduced massμ and anharmonic frequencyωχ, and is found by the relation

α =

√
2ωχμ

~
=

√
ωe

2μ

2D
(2.3)

The coordinatex denotes the variation of a chemical bond from its equilibrium length, and where

the potential has its minimum and zero value atx = 0.

Recently McCoy [24] revived interest in exact eigenfunctions and eigenvalues [25] of Morse

oscillator as shown in Equation 2.4 and Equation 2.5a below. This allows analytical analysis of

their quantum dynamics that may shed light on dynamics of extended Morse-type systems and

anharmonic potentials in general.

The Morse oscillator, as an anharmonic oscillator, has unequal spacing between its energy
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levels which is in contrast with the uniform energy level spacing of harmonic oscillator. The

energy levelsEn = ~ωn in Equation 2.4 have uniform (harmonic) spacingΔE = ~ωe compressed

at higher quantum numbern if anharmonic frequencyωχ is positive.

En = ~ωn = ~ωe(n +
1

2
) − ~ωχ(n +

1

2
)2 (2.4)

The corresponding Morse eigenfunctions of the eigenvalues are given by Equation 2.5a whereL2s
n

represents a generalized associated Laguerre polynomial [24].

φn(x) = e
−y(x)

2 y(x)s(n)

√
α(ν − 2n − 1)n!

Γ(ν − n)
L2s(n)

n (y(x)) (2.5a)

The exponentially scaled coordinatey(x), and exponents(n) are given as follows

y(x) = νe−αx (2.5b)

s(n) =
1

2
(ν − 2n − 1) (2.5c)

Here, the scaling parameterν is given as

ν =
4D

~ωe

(2.5d)

A linear combination of the stationary eigenfunctions will give rise of a dynamic wave packet

ψ(x, t) =
nmax∑

n=0

cnφn(x)e−i Ent
~ (2.6)

wherenmax is the highest bound state that its eigenvalue is the nearest value to dissociative limit

D, cn stands for then-th order constant coefficient, ande−iEnt/~ is the complex exponential factor

related with timet.

A sample Morse oscillator potential shown in Figure 2.1 (a) was made of harmonic frequency
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ωe/2πc = 18(cm−1) and anharmonic frequencyωχ/2πc = 1(cm−1), and each of its stationary

eigenfunctionφn was plotted on a energy level of eigenvalueEn. If the initial wave packet (Equa-

tion 2.6 att = 0) is a sum of nine stationary bound states (fromn = 0 to nmax = 8) shown

in Figure 2.1 (b), it evolves in space and time as shown in Figure 2.1 (d-f) ending in the lowest

Ψ(x, T ) trace of Figure 2.1 (d) with a full revival of its initial shape.

For simplicity, the constant coefficientcn = 1 is assumed in this Morse oscillator research.

The space-time plots of the probabilityΨ(x, t)∗Ψ(x, t) in Figure 2.1 (e-f) show quantum beats in

space and time. The resonant beat nodes and anti-nodes in Figure 2.1 (e-f) outline semi-classical

trajectoriesx(t) corresponding to energy valuesEn ranging from the lowest ground stateE0 up to

the highestEnmax .

9



Figure 2.1: The Morse oscillator with harmonic frequencyωe/2πc = 18(cm−1) and anharmonic
frequencyωχ/2πc = 1(cm−1). (a) A total of 9 bound stationary states is listed along the corre-
sponding energy level in the potential well (red-color-line), these wave functions are normalized
(indicated by the same-height dotted-line). (b) The probability distribution of these stationary
states is listed along the corresponding energy level in the potential well. (c) The corresponding
probability-wavepacket is formed by the superposition of these bound eigenstates att = 0 . (d) The
wavepacket is propagated along the time-steps. (e) The probability density map of the wavepacket
as a function of space and time. The double arrows connecting (d)-(e) indicate the correspond-
ing time events. (f) The 3 dimensional (3D) probability distribution map of the wave packet as a
function of space and time.
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2.1 Analysis of Exact Revival PeriodTrev

In the analysis of wave packet dynamics in anharmonic oscillating system, the first essential and

challenge thing is to do a prediction of the exact revival period of the wave packet. SupposeT is

the revival period time, the wave packet function satisfiesψ(x, t) = ψ(x, t + T ), and is expressed

as

ψ(x, t) =
N∑

n=0

φn(x)e−i En
~ t = ψ(x, t + T ) =

N∑

n=0

φn(x)e−i En
~ (t+T ) (2.7a)

Whent = 0, it becomes

ψ(x, 0) =
N∑

n=0

φn(x) = ψ(x, T ) =
N∑

n=0

φn(x)e−i En
~ T (2.7b)

For nontrivial solution, it demands

φn(x) = φn(x)e−i En
~ T (2.7c)

Then, it requires
En

~
T = 2πMn (2.7d)

whereMn are integers. WhenEn is substituted by the Morse energy level Equation 2.4, this

requirement becomes

EnT = [(n +
1

2
)ωe − (n +

1

2
)2ωχ]T = 2πMn (2.7e)

It can be rewritten as

En+1T = [(n + 1 +
1

2
)ωe − (n + 1 +

1

2
)2ωχ]T = 2πMn+1 (2.7f)

11



whereMn+1 are integers. Then the substraction of above two nearby equations gives

En+1T − EnT = [ωe − (2n + 2)ωχ]T = 2π(Mn+1 − Mn) (2.7g)

Similarly, it can be rewritten as

En+2T − En+1T = [ωe − (2(n + 1) + 2)ωχ]T = 2π(Mn+2 − Mn+1) (2.7h)

Then the substraction of above two nearby equations gives

(En+2T − En+1T ) − (En+1T − EnT ) = 2ωχT = 2π(Mn+2 − 2Mn+1 + Mn) (2.7i)

Therefore, the revival period time of the Morse oscillator can be expressed concisely as

T =
π

ωχ

M (2.8a)

whereM is integer coefficient. This concise revival period formula reveals two facts of the dynamic

wave packets in the Morse oscillating system. The first fact is that the minimum or fundamental

revival period is

Tmin−rev =
π

ωχ

(2.8b)

which is exactly the shortest revival time for Morse oscillator found by Wang and Heller [23].

And the second fact is that any complete revival period is made of integer numbers of the fun-

damental period. In other words, any complete quantum trajectory must contain integer numbers

of semiclassical-trajectory-profile period (the minimum revival period) which is approximately

outlined by a classical particle oscillating with anharmonic frequency2ωχ in the Morse potential.

For illustrating the connection between semiclassical-trajectory-profile period and quantum

period, consider three classical particles with corresponding quantum eigenvalue energies are os-

cillating in a Morse potential well as shown Figure 2.2 (a), where the rainbow-shape trajectory of a

12



classical particle withE2 energy is having a classical oscillating periodT close to the fundamental

period ofπ/ωχ. While the trajectory of classical particle withE3 = D energy indicates that this

particle is escaping from the limit of the Morse potential well, and will never come back.

Above simple procedure provides a general revival period formula for the Morse oscillator

straightforwardly. For practical applications, it is necessary to determine the integer coefficientM

of Equation 2.8a. In order to determine a specific integerM for a specified Morse oscillator with

given parameters(ωe, ωχ), more analysis are required.

Figure 2.2: The connection between the maximum beat period and semiclassical-trajectory-profile
period (the minimum revival period). (a) 3 classical trajectories of particles oscillating in a Morse
potential are plotted in one period time, and one additional classical trajectory of particle with
dissociation energyD is also plotted. The red-balls in (a) and (b) indicate that these classical
particles have the same energies as the corresponding quantum eigenvalue energies. (b) The prob-
ability amplitudes of 3 bound quantum eigenfunctions are listed along energy level in a Morse
potential (red-thick-line). In the bottom, two fundamental ways for predicting the same period are
symbolized by two basic monetary units: the U.S. dollar and Chinese yuan.

13



The beating between waves with close frequency is playing key role in wave packet dynamics.

Especially, the maximum beat periodTmax−beat generating by two closest bound energy levels in

the Morse well is the key for searching revival period. A complete revival of|Ψ(x, t)|2 at timeTrev

must contain integer numbers of all beat periods including at least one fundamental time period

Tmax−beat for the slowest beat frequency. This assumption of wave beat period is expressed as

Trev = Tmax−beatN (2.9)

whereN is integer coefficient. According to the Morse energy level Equation 2.4, the gap between

energy levels is given

ΔE = En − En−1 = ~(ωe − 2ωχn) (2.10)

This Equation 2.10 exhibits clearly thatΔE approaches minimum asn approaches maximum,

which indicates the minimum energy gap is occurring between the highest bound quantum number

nmax andnmax−1. Therefore, by the energy and frequency relationshipE = ~ω of quantum matter

wave, the maximum beat period between any two energy levels is expressed as

Tmax−beat =
2π

(Δω)min

=
2π

Enmax − Enmax−1

~ =
2π

ωe − 2ωχnmax

(2.11)

For estimating the highest bound energy levelnmax in above Equation 2.11, it is supposed that

nmax is the integer part of a real numbernreal. Thus, by substituting this real numbernreal into

the energy Equation 2.4, the resulted energyEnreal
will be exactly equal to the dissociative limitD

given by Equation 2.2. This equivalent relation is expressed as

Enreal
= ~ωe(nreal +

1

2
) − ~ωχ(nreal +

1

2
)2 = D =

ω2
e

4ωχ

~ (2.12a)

This is a perfect square equation with one root given by

nreal =
we

2wχ

−
1

2
(2.12b)

14



The integer part ofnreal (the floor of nreal) is the highest Morse quantum numbernmax (For

Figure 2.1, this isnmax = 8).

nmax = Floor[nreal] = Floor[
we

2wχ

−
1

2
] (2.12c)

The following fractional partδN of nreal is called the quantum deviation between the dissociative

limit D and the highest bound energy level.

δN = nreal − nmax (2.12d)

As illustrated in Figure 2.2(b),δN is proportional to energy gap betweenD and the highest bound

energy level.

Then, the fundamental periodTmax−beat in Equation 2.11 can be expressed in term ofδN as:

Tmax−beat =
2π

ωe − 2ωχnmax

=
2π

ωe − 2ωχ(nreal − δN )
=

2π

ωe − 2ωχ( ωe

2ωχ
− 1

2
− δN )

=
π

ωχ(δN + 1
2
)

(2.13a)

By applying the fact ofTmin−rev = π/ωχ given by Equation 2.8b, above Equation 2.13a can be

rewritten as

Tmax−beat =
π

ωχ(δN + 1
2
)

= Tmin−rev
1

(δN + 1
2
)

(2.13b)

Thus, the relationship between these two fundamental building blocks of a complete Morse revival

period is given by
Tmin−rev

Tmax−beat

= δN +
1

2
(2.14a)

And based on the statements from Equation 2.8a and Equation 2.9, a perfect quantum revival

period of the Morse oscillatorTrev is composed of integer numbers of the fundamental periods as

following

Trev = Tmin−revM = Tmax−beatN (2.14b)
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As a direct result of above Equation 2.14a and Equation 2.14b, the ratio of those undetermined

integer coefficients satisfy
N
M

= δN +
1

2
(2.14c)

Therefore, in the approach of beat-period way, a perfect quantum revival timeTrev of the Morse

oscillator can be expressed in terms ofTmax−beat andδN as following

Trev = Tmax−beatN = Tmax−beatNumerator[δN +
1

2
] (2.15a)

At the same time, in the approach of semiclassical-trajectory-profile way,Trev can also be ex-

pressed in terms ofTmin−rev andδN as following

Trev = Tmin−revM = Tmin−revDenominator[δN +
1

2
] (2.15b)

Thus, eitherTmin−rev or Tmax−beat can be served as the fundamental building block ofTrev. A

useful dairy life analogy to this fact is that one product can be paid by two basic monetary units in

the world market. If these two fundamental periods are symbolized by two basic monetary units:

American dollar and Chinese yuan, as marked by the double-arrow in the bottom of Figure 2.2,

then some immediate questions will be coming up, such as “When these two currencies are used in

the quantum world, what will be the exchange rate between them?” For answering such interesting

question, the consequent results and analysis of these two fundamental periods are discussed in the

following section.
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2.2 Fibonacci Sequence and Exchange Rate ofTmin−rev

Tmax−beat

The Morse complete revival periodTrev appears complex because of the anharmonicity of Morse

oscillators. For a simple illustration without losing the generality, as shown in Figure 2.3 (a)

through (c), the value ofTrev was increased step by step from the very beginning of the minimum

revival periodTmin−rev.

By keeping the same anharmonic frequencywχ/2πc = 1(cm−1), the occurring one com-

plete revival time of Morse oscillator withwe/2πc = 18(cm−1) as shown in Figure 2.3 (a)

was exactly equal to the minimum revival periodTmin−rev. Here, one complete revival period

is Trev = Tmax−beat = Tmin−rev, and the ratio of this minimum revival period to this maximum

beat period wasTmin−rev/Tmax−beat = 1/1.

Meanwhile, as shown in Figure 2.3 (b), the appearing one complete revival time of Morse

oscillator withwe/2πc = 17(cm−1) was exactly twice as longer as the minimum revival period

Tmin−rev. Here, one complete revival period isTrev = Tmax−beat = 2Tmin−rev, and the ratio

of this minimum revival period to this maximum beat period wasTmin−rev/Tmax−beat = 1/2.

Interestingly, this appearing revival timeTrev = 2Tmin−rev = 2π/wχ is exactly equal toTapprox

in the Equation 2.16. According to a semiclassical treatment for general anharmonic oscillators

[26, 27, 28, 29], the complete revival time for Morse oscillator would be approximated by the

following Equation 2.16 assuming large quantum numbersn close to their averagēn.

Tapprox =
2π

1
2

∣
∣d2En

dn2

∣
∣
n=n̄

=
2π

wχ

(2.16)

Moreover, as shown in Figure 2.3 (c), the presenting one complete revival period of Morse

oscillator withwe/2πc = 17 + 1
3
(cm−1) was exactly triple as longer as of the minimum revival

periodTmin−rev. Here, one complete revival period wasTrev = 2Tmax−beat = 3Tmin−rev, and the

ratio of this minimum revival period to this maximum beat period wasTmin−rev/Tmax−beat = 2/3.

Remarkably, one complete revival periodTrev was composed of a whole integer number of the

fundamental periodTmin−rev (or Tmax−beat), and the ratioTmin−rev/Tmax−beat was able to form
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Figure 2.3: Fibonacci sequence and exchange rate. (a) WhenδN = 1/2, theTrev is composed
of oneTmax−beat and oneTmin−rev. (b) WhenδN = 0, theTrev is composed of1Tmax−beat and
2Tmin−rev. (c) WhenδN = 1/6, theTrev is composed of2Tmax−beat and3Tmin−rev. (d) The ratio
of Tmin−rev to Tmax−beat are forming the the Fibonacci sequence (symbolized by the spiral shell
background). The inserted monetary picture symbolizes the ratio ofTmin−rev/Tmax−beat as the
exchange rate of currency.
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the Fibonacci sequence{1/1, 1/2, 2/3, 3/5, 5/8, ....}. In other word, the Fibonacci sequence is

the subset of the ratioTmin−rev/Tmax−beat. A useful analogy for describing the alternative ratio of

Tmin−rev/Tmax−beat in various revival periods is the currency exchange rate, such as exchange rate

between U.S. dollar and Chinese yuan is varying with economic circles.

Furthermore, as shown in Figure 2.4 (a), the presenting one complete revival time of Morse

oscillator withwe/2πc = 17.5(cm−1) is exactly four times of the minimum revival timeTmin−rev.

And in Figure 2.4 (b), the presenting one complete revival time of Morse oscillator withwe/2πc =

17.2(cm−1) is exactly five times of the minimum revival timeTmin−rev. Therefore, it was indicated

that any completely revival timeTrev of the Morse oscillators was made of the minimum revival

timeTmin−rev integrally. This quantized period concept is a restatement of the Equation 2.15a and

Equation 2.15b.

Figure 2.4: A complete revival timeTrev of the Morse oscillators is a quantized by fundamental
period. (a) WhenδN = 1/4, theTrev is composed of3Tmax−beat and4Tmin−rev. (b) WhenδN =
1/10, theTrev is composed of3Tmax−beat and5Tmin−rev.
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2.3 Farey Sequence and Ford Circles within a Perfect Minimum Revival Period

From previous section, a highly symmetric revival structure within a perfect minimum revival

period (Tmin−rev/Tmax−beat = 1) was observed in Figure 2.3 (a). For analyzing such symmet-

ric revival pattern in detail, a sample Morse oscillator potential withωe/2πc = 42(cm−1) and

ωχ/2πc = 1(cm−1) was introduced. Then, according to Equation 2.12c for the maximum bound

eigen states, a total of21 bound eigenfunctions(nmax = 20) was allowed in this sample poten-

tial as illustrated in Figure 2.5. The superposition of these bound wave functions would form a

probability-wave-packet(ψ∗ψ) oscillating in this potential well.

Importantly, according to Equation 2.15b for exact revival period, the complete revival period

of this Morse wave packet was exactly equal to a minimum revival period:Trev = 1Tmin−rev =

1Tmax−beat = 1/(2c(cm)−1) ≈ 16.7(picro − second). For illustrating the symmetric beauty of

such perfect minimum revival period (denoted asTmin−rev/Tmax−beat = 1), the space-time maps

composed of two complete revival periods were plotted in Figure 2.6 for comparison.

Figure 2.5: A sample Morse oscillator with harmonic frequencyωe/2πc = 42(cm−1) and anhar-
monic frequencyωχ/2πc = 1(cm−1). (a) A total of21 bound stationary states is listed along the
corresponding energy level in the potential well (red-color-line), these wave functions are normal-
ized (indicated by the same-height dotted-line). (b) The probability distributions of these stationary
states are listed along the corresponding energy level in the potential well.
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Figure 2.6: Space-time map in 2 complete revival periods. (a) The Morse wave packet composed
of 21 bound states was propagated along the time-step. (b) The probability density map of the
wave packet as a function of space and time. The double arrows connecting (a)-(b) indicate the
corresponding time events.
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2.3.1 Autocorrelation Function and Farey-sum Sequence

For finding the periodic footprints in this kind of dynamic quantum systems, an autocorrelation-

function is often useful a sharp tool [27]. According to the time-evolution in Equation 2.6, an

autocorrelation-function is expressed as Equation 2.17, whereωn is the eigen-frequency.

A(t) =
nmax∑

n=0

e−i Ent
~ =

nmax∑

n=0

e−iωnt (2.17)

Consider above dynamic wave packet in Figure 2.6 , the corresponding autocorrelation func-

tion was composed of21 eigen-frequencies. As illustrated in Figure 2.7 (a), the norm|A(t)| =
√

A(t)∗A(t) was plotted fromt = 0 to t = 1Trev. Meanwhile, as shown in Figure 2.7 (b), the

norm of wave packet|ψ| =
√

ψ∗ψ was plotted as a function of space and time. Here, the reason

for plotting |ψ| =
√

ψ∗ψ instead of the usual|ψ|2 = ψ∗ψ is due to the fact that the plot of|ψ|

is sharper than the plot of|ψ|2, while both|ψ| and |ψ|2 contain the physical meaning of proba-

bility. For instance, the revival plot in Figure 2.7 (b) is sharper and clearer in comparison to the

revival plot of Figure 2.6 (b), while both plots share the same essential information of wave packet

dynamics.

By comparing these two plots in Figure 2.7 (a) and (b), a periodic correlation was clearly

indicated. This closer examination of fractional revival in Figure 2.7 leads to a remarkable dis-

covery that the quantum revival structure was nearly perfect match with the Farey-sum sequence

{1
2
, 1

3
, 1

4
, 2

7
, 2

5
, 3

7
} , as denoted by the vertical dashed lines in Figure 2.7 (a). In mathematic number

theory, the Farey-sum-tree or Farey-sum sequence is the sequence of irreducible rational numbers

between0 and1, the Farey sequence starts with the value0/1, and ends with the value1/1 [30].

The simple Farey-sum rule for adding fractions is illustrated in Figure 2.8 (a) .
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Figure 2.7: The Farey-sum sequence structure appearing in quantum dynamic pattern in the Morse
oscillator with parameterswe/2πc = 42(cm−1) andwχ/2πc = 1(cm−1). (a) The norm of auto-
correlation function(|A(t)| with nmax = 20) is plotted in one complete revival periodTrev whose
fractions{1

2
, 1

3
, 1

4
, 2

7
, 2

5
, 3

7
} are denoted by the vertical dashed lines. (b) One complete revival period

plot of the wave packet(|Ψ(x, t)| with nmax = 20), the color denotes the probability density of the
wave packet. The double dashed arrows connecting (a)-(b) indicate the corresponding time events.
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2.3.2 Ford Circles Geometry for Quantum Revivals

There is an interesting connection between Farey-sum sequence and Ford circles [31]. For instance,

a Farey-sum sequence of1
7

depth{0
1
, 1

7
, 1

6
, 1

5
, 1

4
, 2

7
, 1

3
, 2

5
, 3

7
, 1

2
, 4

7
, 3

5
, 2

3
, 5

7
, 3

4
, 4

5
, 5

6
, 6

7
, 1

1
} was displayed

by a total of19 mutually tangent circles in Figure 2.8 (b), and the fractional number was sitting

inside of each circle. If the base line distance between two biggest circles{0
1
, 1

1
} is defined as one

unit length, then the tangential position of each circle to the horizontal base line was a fraction

of the unit length, which was marked by the red-arrow in Figure 2.8 (b-c). Thus, the fractional

number inside of each circle was to denote its tangential position of the base line.

Figure 2.8: A simple relationship between Ford circles and Farey-sum sequence. (a) Some exam-
ples of the Farey-sum-rule for irreducible fractions. (b) Ford circles corresponding to Farey-sum
sequence of1

7
depth{0

1
, 1

7
, 1

6
, 1

5
, 1

4
, 2

7
, 1

3
, 2

5
, 3

7
, 1

2
, 4

7
, 3

5
, 2

3
, 5

7
, 3

4
, 4

5
, 5

6
, 6

7
, 1

1
}. (c) Ford circles of (a) are

zoomed in to denote that each circle is tangential to the horizontal base line and its neighboring
circles.

For building the Ford circles associating with Farey-sum sequence, consider a(x, y) area that
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contains all rational fractionsa/b each with a vectorV a
b

=

(
x = a
y = b

)

. VectorsV0
1

=

(
0
1

)

and

V1
1

=

(
1
1

)

for fractions0
1

and 1
1

pointing from original point(0, 0) of thex, y coordinate system.

A remarkable fact discovered by Ford [31] is that each suchx = a/b point is a tangent point for one

of an infinite number of mutually tangent circles hanging below the top-horizontal-line(x = 1)

and each one of the circles having diameter1/b2. The first such Ford-circle is theb = 1 case that

is a single unit diameter circle cut in half to fillΔx = 1. The second case forb = 2 is drawn in

Figure 2.9 that belongs to the vector sum ofV0
1

andV1
1
,

V0
1

+ V1
1

=






0

1




+






1

1




 =






1

2




 = V1

2
(2.18a)

Here its vectorV1
2

points to a circle of diameter1/22 that is perfectly tangent to its “parent"

unit Ford circles for fractions0
1

and 1
1
. Similarly, Figure 2.9 also shows ab = 3 vectorV1

3
that is

sum ofV0
1

andV1
1
as following

V0
1

+ V1
2

=






0

1




+






1

2




 =






1

3




 = V1

3
(2.18b)

This kind of vector sum is named a Farey-sum after geologist John Farey [30] who used it to

compute tidal beats. Continuing on these sums between vectors gave rise a series of shrinking

circles belonging to vectors{V1
4
,V1

5
,V1

6
,V1

7
,V2

5
, ..., V6

7
}. As illustrated in Figure 2.9, these

circles sit in the area between their Farey “parents” circlesV0
1

andV1
1
.
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Figure 2.9: Building the Ford circles by vector associating with Farey-sum sequence
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2.4 Conclusion of Morse Oscillator

In conclusion, the exact analytical wavefunctions of the Morse oscillator allowed an unprece-

dented detailed analysis of the rich and diverse behavior of the quantum dynamics. Based on the

key parameterδN relating with the gap between the highest bound eigenstate and the dissociation

energy, a concise way for searching the exact revival timeTrev of the Morse oscillator was given

for the first time. The applications of two fundamental periodsTmax−beat andTmin−rev allowed the

discovery of the relationship between Fibonacci sequence and the Morse complete revival time.

The applications of two fundamental periodsTmax−beat andTmin−rev allows the discovery of the

relationship between Fibonacci sequence and the Morse complete revival time. Particularly, the

minimum periodTmin−rev suggested a quantized period concept that the complete period is made

of integer numbers of the fundamental period in the quantum world of the Morse oscillator. A

closer examination leads to a discovery that the quantum resonance and revival structure had a

curious connection with the Farey-sum structure, which was illustrated with the classical Ford

circles. This Fibonacci-Farey-Ford geometry should provide a further step towards a systematic

understanding of the quantum wave packet dynamics, and such a quantum dynamic system may

eventually lead to applications for quantum information processing and computing.
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Chapter 3

Double-Morse Oscillator

From the study of previous chapter, it was clear that when Morse oscillators are considered as

isolated regions, their revival patterns were in perfect symmetry of Farey-sum structure, as shown

in Figure 3.1. But, when two Morse oscillators are in contact, a double-well potential is formed.

A remarkable feature of a double-well or bistable-well is that quantum tunneling occurs within the

barrier of two oscillators, and unique quantum dynamics are expected to occur in the double-well

potential.

Figure 3.1: Two Morse oscillators with reflective symmetry are sitting on both sides, and isolated
by infinite barrier (indicated by the thick-red-arrow). Their revival patterns are in perfect symmetry
when both of them are living in their isolated kingdoms.
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However, completely analytical solutions of double-well potentials are very rare. For instance,

the double-square-well potential provides an analytical solution but its allowed eigenvalues are

determined implicity by solving a transcendental equation. A few of partially analytical (quasi-

exactly solvable) double-well potentials are available in the literature, including sextic double-

well potential,φ4 potential, and the Razavy bistable potential. Furthermore, a striking feature

of quantum tunneling in double wells is the extremely sensitivity to perturbations, which makes

numerical techniques and approximation methods very difficult and requires a very careful control

of the asymptotic behavior of tails of wave functions. This is one reason why a new method to

determine exact solutions of double wells is desired and valuable.

It is worthwhile to introduce a partially analytical double-well potential from Caticha [32, 33].

Even though, only the ground state and first excited state are known analytically in this potential,

the striking beating dynamics from two tunneling states is clearly observed in Figure 3.2 (d-f).

Figure 3.2: Quantum beating state in the Caticha double well potential. (a) The analytical ground
state and the first excited state are listed along the corresponding energy level in the potential well
(red-color-line). (b) The wavepacket is formed by the superposition of these eigenstates att = 0.
(c) The probability-wavepacket is formed by the superposition of these bound eigenstates att = 0.
(d) The wavepacket is propagated along the time-steps. (e) The probability density map of the
wavepacket as a function of space and time. (f) 3D plot of the probability density map of (e).
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3.1 A Genuine Double-Morse Potential

At first, according to the identity of hyperbolic function:ex = cosh(x) + sinh(x), the Morse

potential in Equation 2.1 were expressed in terms of hyperbolic function:

VM(x) = D(1 − e−αx)2 = D[1 − cosh(−αx) − sinh(−αx)]2 (3.1)

Then, a pair of Morse potentials equations were created by±α and±x0:

VM+(x) = D[1 − cosh(−α(x + x0)) − sinh(−α(x + x0))]
2 (3.2a)

VM−(x) = D[1 − cosh(α(x − x0)) − sinh(α(x − x0))]
2 (3.2b)

These two Morse Potentials had a reflective symmetry as shown in Figure 3.3(a). A simple sum

of these two Morse potentials gave rise a genuine symmetric Double Morse Potential:

VMM (x) = VM+(x) + VM−(x) + constant (3.2c)

where theconstant was for vertical translation of the Double Morse potential so that its minimum

was the same as its parent potentials:VMM (x)|minimum = VM+(x)|minimum = VM−(x)|minimum =

0, as shown in Figure 3.3(b).
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Figure 3.3: Building a genuine Double Morse Potential by a pair of Morse potentials. (a)VM+(x)
potential sits on the left side as indicated by the black-dotted line, whileVM2(x) potential sits on
the right side as indicated by the blue-dashed line, a simple sum of these two potentials results a
double-Morse potentialVM+(x) + VM−(x) as indicated by the red thick line. (b) Then, moves the
red double-Morse potential down vertically by aconstant of Equation 3.2c so that its minimum is
the same as its parent potentials.
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3.1.1 High Fidelity between a Razavy Potential and a Specified Double-Morse potential

At the time of this research, there was no exact analytical eigenfunctions of the genuine symmetric

double Morse potential in Equation 3.2c. However, there was a special type of hyperbolic double-

well potential whose low-lying energy states was exactly solvable, and it is known as Razavy

potential [34][35] as

VR(x) = [ζ cosh(2x) − n]2 (3.3)

wheren is a positive integer for the desired energy levels, andζ is determined by the minimum

potential condition. For instance, if the desired minimum of the Razavy potential is occurring at

(x = ±x0) , such as

VR(x0) = [ζ cosh(2x0) − n]2 = 0 (3.4a)

Then, the parameterζ is specified as

ζ = n sech(2x0) (3.4b)

Thus, the Razavy potential can be expressed in a concrete form of(x0, n)

VR(x) = [n sech(2x0) cosh(2x) − n]2 = 0 (3.4c)

Noteworthy, the lowestn energy levels of this quantum potential are exactly solvable, and their

energy eigenvalues and eigenfunctions can be computed and expressed analytically in terms of a

finite number of certain common functions [34][36][35]. In 1979, Razavy was the first to develop

these exact energy levels of(n = 1, 2, 3, 4) for studying a bistable potential [34]. After nearly

two decades, in 1998, Habib became the first to extend these exact energy levels up to(n = 5, 6)

for studying statistical mechanics of double sinh-Gordon Kinks [36]. Since the exactly solvable

eigenfunctions of a Razavy potential are all the low-lying eigenfunctions, a deeper double-well

means more exactly solvable eigenfunctions can be found.
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For instance, as illustrated in Figure 3.4, in a shallow Razavy potential, only four stationary

wave functions(n = 1, 2, 3, 4) can be computed exactly, while in a deeper Razavy potential, up to

six stationary wave functions(n = 1, 2, 3, 4, 5, 6) can be computed exactly.

Using methods developed in this work, the exact energy levels were extended up to(n =

21, 22) in Razavy potential, and also a specified Double-Morse potential was developed to match

a Razavy potential nearly perfectly.

To build up a best-fitting Double-Morse potential, its three parameters(α, x0, D) were specified

with best-fit values step by step. The first key step was to set (α = 2) so that the Double-Morse

VMM (x) of Equation 3.2c was simplified and expressed in terms ofcosh(2x) as

VMM (x) = D[2 − 4e−2x0cosh(2x) + 4e−4x0cosh2(2x) − 2e−4x0 ] + constant (3.5a)

which was the bestVMM (x) form one can get among variousα value for a matching Razavy

equation (becausecosh(2x) is the main term of Razavy equation as shown in Equation 3.4c).

Then, the second step was searching for the best-fit value ofx0 by assuming the minimum of

both Double-Morse potential and Razavy potential were located atx = ±R0. This reasonable

assumption{VMM (±R0) = minimum, VR(±R0) = minimum} ledx0 to be determined by

x0 = arccosh(
−1 + 4cosh2(R0)√
−8 + 16cosh2(R0)

) (3.5b)

The last step was estimating the bets-fit value ofD by the condition thatVMM (0) = VR(0) = local-

maximum. This fitting condition ledD to be determined by

D =
n2e4x0sinh2(R0)sech

2(2R0)

4ex0sinh(x0) − 2cosh(2R0)
(3.5c)

Based on above best-fit parameters searching scheme, a high fidelity match between the Razavy

potential and a specified Double-Morse potential was determined.

33



Figure 3.4: The exactly solvable eigenfunctions are relevant with the depth of double-well. (a)
Up to four stationary wave functions(n = 1, 2, 3, 4) are exactly-computed in a shallow Razavy
potential well (indicated by red-color-line), and listed along their energy levels. (b) Up to six
stationary wave functions(n = 1, 2, 3, 4, 5, 6) are exactly-computed in a deeper Razavy potential
well (indicated by red-color-line), and listed along their energy levels.
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For a clear picture of the quality of their match or similarity, a close look at a deep Razavy

potential with22 exactly-computed eigenfunctions (which will be used frequently in the coming

sections) was required for this research. For a Razavy potential of(n = 22, R0 = 2), a best-fit

Double-Morse potential was of parameter values(α = 2, x0 = 2.000167, D = 484) which were

calculated by Equation 3.5a, Equation 3.5b and Equation 3.5c,

Algebraically, the tiny difference between a Razavy potential of(n = 22, R0 = 2) and a

Double-Morse potential of(α = 2, x0 = 2.000167, D = 484) was limited to a few parts per

million, as indicated by the following underlines

VR(x) = 484 − 35.44718568 cosh(2x) + 0.649020130 cosh2(2x) (3.6a)

VMM (x) = 484 − 35.44718997 cosh(2x) + 0.649020209 cosh2(2x) (3.6b)

Graphically, the local-maximum in the middle of the double wells was zoomed in by 1000

times, but no difference was observed as shown in Figure 3.5 (b1). When the bottoms of the dou-

ble wells were zoomed in by 1000 times, only(0.0001
500

= 0.2ppm) potential-deviation was observed

in Figure 3.5 (b2). Therefore, based on above graphical and algebraical analyses, the deviation be-

tween a Razavy potential and a genuine Double-Morse potential can be approached to a ppm (part

per million) level in this case. Theoretically, the deviation betweenVMM (x) andVR(x) is subject

to exponential decay when the distance(2R0) between two bottoms of double-well is extended

linearly. They are not exactly the same, but are similar enough for many applications. Hereinafter,

a Razavy potential will refer to a specified Double-Morse potential with best-fit parameters.
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Figure 3.5: Graphically analysis on the deviation of a genuine Double-Morse-Potential from a
Razavy potential. (a) A Razavy potential is sitting between two Double-Morse potentials with
variousα. (b) A good match between a Razavy potential of(n = 22, R0 = 2) and a Double-
Morse potential of(α = 2, x0 = 2.000167, D = 484). (b1) The tops in the middle of the double
wells are zoomed in by 3 order of magnitude, no difference is observed. (b2) The bottoms of the
double wells are zoomed in by 3 order of magnitude, only(0.0001

500
= 0.2 ppm) potential-deviation

is observed in maximum.
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3.1.2 Exact Eigenfunctions and Eigenvalues of a Deep Double-Morse Potential

In quantum mechanics, consider the one dimensional time-independent Schrodinger equation of

potentialVMM (x) and energyE

d2

dx2
φ(x) −

2m

~2
[VMM (x) − E]φ(x) = 0 (3.7)

This partial differential equation is exactly solvable for certain energy levels, but not for all the

energy spectrums. The solutions ofφ(x) for n low-lying energy levels are exact and simply given

in closed form as[34][36][35]

φeven(x) = e
−n
2

sech(2x0) cosh(2x)

(n−2)/2∑

j=0

C2j+1cosh((2j + 1)x) (3.8a)

φodd(x) = e
−n
2

sech(2x0) cosh(2x)

(n−2)/2∑

j=0

S2j+1sinh((2j + 1)x) (3.8b)

whereC2j+1 andS2j+1 are coefficients.

The above eigenfunctions of even and odd states are simple, however the challenge is how to

obtain the values ofC2j+1 andS2j+1 efficiently. In this work, a matrix scheme was developed for

getting the coefficients as quickly as possible. For a clear interpretation of this matrix scheme, the

coefficientC2j+1 was taken as an example. The basic procedure was as follows.

Firstly, by substituting the polynomial formψeven(x) into the Schrodinger Equation 3.7, the

2nd-order derivative of this equation gave rise a complex polynomial hyperbolic equation by

[−E + n2 − 2(n − 1)ζcosh(2x)]

(n−2)/2∑

j=0

cosh((2j + 1)x)C2j+1

−
(n−2)/2∑

j=0

(2j + 1)2cosh((2j + 1)x)C2j+1

+2ζsinh(2x)

(n−2)/2∑

j=0

(2j + 1)sinh((2j + 1)x)C2j+1 = 0 (3.9a)
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where parameterζ = n sech(2x0).

Then it was important to expand the hyperbolic trigonometric functions of above Equation 3.9a

into terms of hyperbolic functioncosh(2x), so that this polynomial equation could be sorted by

terms ofcoshj(2x), and expressed by a matrix form















∑(n−2)/2
j=0 (aj0 + bj0ζ + cj0ζ

2 + dj0E)C2j+1

...
∑(n−2)/2

j=0 (ajk + bjkζ + cjkζ
2 + djkE)C2j+1

...
∑(n−2)/2

j=0 (aj n−2
2

+ bj n−2
2

ζ + cj n−2
2

ζ2 + dj n−2
2

E)C2j+1















T

×















cosh0(2x)

...

coshj(2x)

...

cosh
(n−2)

2 (2x)















= 0 (3.9b)

where{ajk, bjk, cjk, djk} were constants whose indexes{j, k} were integers and ranged from0 to

(n− 2)/2. The first column in this matrix was a collection of coefficients. For nontrivial solutions

of C2j+1 , it was required that each element in the first column equal to zero

(n−2)/2∑

j=0

(ajk + bjkζ + cjkζ
2 + djkE)C2j+1 = 0 (3.9c)

Thus, this coefficient column gave rise the recurrence relations which were expressed as an
2
× n

2

matrix form as
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













(a00 + b00ζ + c00ζ
2 + d00E) . . . (aj0 + bj0ζ + cj0ζ

2 + dj0E) . . .

...
...

...
...

(a0j + b0jζ + c0jζ
2 + d0jE) . . . (ajj + bjjζ + cjjζ

2 + djjE) . . .

...
...

...
...

(a0 n−2
2

+ b0 n−2
2

ζ + c0 n−2
2

ζ2 + d0 n−2
2

E) . . . (aj n−2
2

+ bj n−2
2

ζ + cj n−2
2

ζ2 + dj n−2
2

E) . . .















×















C1

...

C2j+1

...

C(n−2)/2















= 0

(3.9d)

Here, the determinant of this square matrix gave rise to a1
2
n-degree polynomial equation of un-

knownE. Therefore, the roots of this polynomial equation were the eigenvalues of energy in even

stateψeven(x). Finally, by substituting the knownE into Equation 3.9c, the coefficientsC2j+1 were

given directly.

Therefore, by applying the above computing scheme, a total of22 exactly-computed eigenfunc-

tions and eigenvalues were obtained smoothly, as indicated in Figure 3.6. During the computation

of the exact eigenvalues in such a deep double well, in order to gain sufficient precision the compu-

tation program had to do computations with 48-decimal-digit of precision, as shown in Figure 3.7.
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Figure 3.6: On the top plot, 22 exactly-computed eigenfunctions are listed along their eigenval-
ues of energy. On the bottom plot, the corresponding probability distribution functionsψ∗ψ are
listed along energy level. The energy level splitting due to quantum tunneling are too small to
distinguished.
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Figure 3.7: A total of 8 pairs wave-functions of energy-level-splitting due to quantum tunneling is
listed on the right-hand side, while the corresponding energy values are listed on the left-hand side.
The energy splitting of the fundamental level(n = 1, 2) is extremely small that their significant
figures are going down to at least 24 digits after decimal point.
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3.2 Resonant beats and Revivals from Tunneling States

In case of the wave packet composed of16 tunneling states as shown in above Figure 3.7, billion

years of evolution of the wave packet was required to plot for investigating the whole picture of

revivals. As shown in Figure 3.8 (b), the resonant beating and revival structure of the Double-

Morse oscillator was very complex, and no complete revival was observed in spite of such long

propagating time(t = 1025ps). Remarkably, the revival structure in Figure 3.8 (c) was similar

with the revival of single Morse oscillator. The unusual phenomenon could be easily understood by

observing the initial eigenstates(t = 0) shown in Figure 3.7 or Figure 3.8 (a): the eigenfunctions in

the left-hand-side well were out of phase so that they cancelled each other, while the eigenfunctions

in the right-hand-side well were in phase so that they enhanced each other.

Figure 3.8: Resonant beats and revivals in the Double-Morse well. (a) A total of 8 pairs wave-
functions of energy-level-splitting due to quantum tunneling is listed on the top of left-hand side.
(b) The corresponding wave packet propagation of long time(t = 1025ps) is plotted on the bottom
of left-hand side. (c) The very beginning moment(t = 2ps) during a long time wave packet
propagation is captured and plotted.
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3.3 Tsunami-like Resonant Beats and Revivals from Non-tunneling States

In case of the wave packet composed of6 non-tunneling states as shown in Figure 3.9, the evo-

lution of the wave packet appeared special kinds of order. At the well regions, the wave packet

propagation was of dashed-line shape along the time direction. Meanwhile, at the local top region,

the wave packet was of random large-dotted shape along the time direction. A useful analogy for

describing this kind of striking wave packet dynamics at the local top is the tsunami wave at a

coastal beach. Further analysis of this remarkable dynamics is expected in the future work.

Figure 3.9: Tsunami-like waves at the local top (coastal beach) of a deep Double-Morse well. A
total of 6 non-tunneling wave functions from then = 22 deep Double-Morse well (indicated by
red line) is listed on the bottom. On the top, the corresponding wave packet propagation is plotted
as a function of time and space.

43



3.4 Conclusion of Double-Morse Oscillator

In conclusion, with a best-fit parameters scheme developed in this work, a specified double-Morse

potential was developed to have a high fidelity solution of the quasi-solvable Razavy potential.

Exact analytical eigenfunctions and eigenvalues up ton = 22 energy levels of the double-well

potential were achieved for the first time. Through an efficient matrix scheme, detail of energy

splitting analysis is available for the study of the rich and diverse behavior of quantum dynamics

involving tunneling. A closer examination led to a discovery that the non-tunneling wave functions

had a significant tsunami-like wave effect, which is relevant with the beach-like landscape at the

local top in the double-well potential. This exact computed energy in a deep double-Morse poten-

tial is desired for many applications, because exact solutions of the unperturbed model will make

the perturbation effect easy to handle in practical problems and provide a solid basis for stepping

into the future study for quantum interference and entanglement.
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Chapter 4

Quantum Rotor

The rotation of normal molecules are able to actively radiate far-infrared light or microwave.

Conversely, modern infrared lasers or masers are the powerful tools used to rotate molecular mo-

tors. For instance, recently developed ultra-fast laser pulses have demonstrated impressive capa-

bility to spin up molecular rotors to extreme rotational states [37] [38]. The controllability of this

new optical centrifuge for quantum scale rotors is extending the frontiers of science and technol-

ogy. The quantum rotor described in this work is a quantum mechanical model for describing the

rotational energy of molecular or atomic particles.

4.1 Symmetric Rigid Rotor

For the purposes of investigating basic rotational dynamics, the study scope of this chapter was

focused on rigid quantum rotors in which vibrational and deformation were neglected. Then the

corresponding Hamiltonian of quantum rotor was given simply as:

H =
J2

x

2Ix

+
J2

y

2Iy

+
J2

z

2Iz

(4.1)

where{Ix, Iy, Iz} were the principal moments of inertia of the rotor body and{Jx, Jy, Jz} were

rotational angular momentum operators in a body-fixed frame. Due to the fact that the Hamiltonian

of an asymmetric rotor(Ix 6= Iy 6= Iz) was not exactly solvable, and many conventional molecules

are symmetric rotors which have two equal moments of inertia(Ix = Iy), such asCO2 andNH3,

the corresponding Hamiltonian in Equation 4.1 was further simplified as [39]:

H =
J2

x

2Ix

+
J2

y

2Ix

+
J2

z

2Iz

=
J2

x + J2
y + J2

z

2Ix

−
J2

z

2Ix

+
J2

z

2Iz

=
1

2Ix

J ∙ J + (
1

2Iz

−
1

2Ix

)J2
z (4.2)

This indicated that the rotational eigen energy states could be simply described by
∣
∣j
mL,mB

〉
,
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where the quantized numberj was given by the relationship:J2Ψ = ~2j(j + 1)Ψ, the quantized

numbermL was given by the relationship in the Lab-frame:JzΨ = ~mLΨ, and the quantized

numbermB was given by the relationship in the Body-frame:JzΨ = ~mBΨ. In a nut shell,
∣
∣j
mL,mB

〉
was a simultaneous eigenfunction ofJ ∙ J andJz, and both the quantizedz-component

numbermL andmB are in the range from−j to +j in quantized steps of integer one. Therefore,

there were a total of(2j +1)(2j +1) eigenfunctions for a symmetric rotor with givenj-value. The

energy value of each eigen energy states was given by

E(j,mB) =
~2

2Ix

j(j + 1) + (
~2

2Iz

−
~2

2Ix

)m2
B (4.3)

4.1.1 Wigner-D Matrix — a Rotation Matrix for Any Spin

In quantum mechanics, an arbitrary rotation action of eigenfunction is described by a quantum

rotation operatorR(α, β, γ), where three angles are defined as the Euler angles. The newly rotated

wave function can be expressed under the angular momentum basis{j,m} as:

|Ψr〉 = R(α, β, γ)
∣
∣j
m

〉
=

+j∑

mr=−j

∣
∣j
mr

〉 〈
j
mr

∣
∣R(α, β, γ)

∣
∣ j

m

〉
(4.4)

The term
〈
j
mr

∣
∣R(α, β, γ)

∣
∣ j

m

〉
in this equation is the powerful Wigner-D matrix which was intro-

duced in 1927 by Eugene Wigner [40]:

Dj
mr,m(α, β, γ) ≡

〈
j
mr

∣
∣R(α, β, γ)

∣
∣ j

m

〉
(4.5)

The Wigner-D matrix is the general rotation matrix for any spin system with a total angular mo-

mentumj. So the rotational transformation Equation 4.4 can be written as:

|Ψr〉 = R(α, β, γ)
∣
∣j
m

〉
=

+j∑

mr=−j

∣
∣j
mr

〉
Dj

mr,m(α, β, γ) (4.6)
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The detail result of Wigner-D matrix for rotor is as the following:

Dj
mr,m(α, β, γ) = e−i(mrα+mγ)

√
(j + mr)!(j − mr)!

√
(j + m)!(j − m!)

×
∑

k

(−1)k(cosβ
2
)2j+mr−m−2k(sinβ

2
)m−mr+2k

(j + mr − k)!(j − m − k)!(m − mr + k)!k!

(4.7)

where thek value is running over all values in which all factorials should be non negative.

For illustrating the dynamic feature of the elements in the Wigner-D matrix with various quan-

tum numbermr andm, a value ofj = 10 was chosen so that an array of(2j + 1)2 = 21 × 21

elements was plotted in each picture of Figure 4.1. Here, the value of each element equaled to the

norm
∣
∣Dj

mr,m(0, β, 0)
∣
∣ which was exactly the probability of transformingm to mr. Moreover, the

rotational feature of the Wigner-D matrix was vividly illustrated by the three sequential pictures of

Figure 4.1.

Figure 4.1: List-point-plotting of Wigner-D matrix withj = 10. A total of (2j + 1) = 21 lists is
plotted, while each list contains a total of(2j + 1) = 21 points. The amplitude of each point is
the value of the norm|Dj

mr ,m(0, β, 0)| with corresponding quantum numbermr andm. The three
pictures from left to right are corresponding to various angles:β = 2π

8
, 3π

8
, 4π

8
.
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For a better observation of rotational dynamics of the Wigner-D matrix, a higher value of

j = 30 was chosen, and a smooth density plotting method was applied as shown in Figure 4.2. As

β rotated from2π
8

to 4π
8

, the density profiles in Figure 4.2 changed from an ellipse to a circle shape.

Figure 4.2: List-density-plotting of Wigner-D matrix withj = 30. A total of (2j + 1) = 61 lists
is plotted, while each list contains a total of(2j + 1) = 61 points. The magnitude of each point is
the value of the norm|Dj

mr ,m(0, β, 0)| with corresponding quantum numbermr andm. The three
pictures from left to right are corresponding to various angles:β = 2π

8
, 3π

8
, 4π

8
.
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4.1.2 Quantum Rotor Wave Function

Due to the fact of quantum uncertainty, a quantum rotor is simultaneously precessing along two

z-axes: onez-axis is of the lab frame and anotherz-axis is of its body frame. This means that

a rotor in eigen energy state
∣
∣j
mL,mB

〉
would be found in many different rotational position states

|α, β, γ〉, whereα is the azimuth angle along lab-z-axis,β is the polar angle of body-z-axis, and

γ is the azimuth angle along lab-z-axis. Therefore, in order to describe the quantum dynamics of

rotor, it is necessary to know the probability of observing
∣
∣j
mL,mB

〉
in the position state|α, β, γ〉.

For building up the formula between
∣
∣j
mL,mB

〉
and |α, β, γ〉, an initial position state|0, 0, 0〉

(|α = 0, β = 0, γ = 0〉) was considered, in which a rotor body frame was automatically lined up

with the lab frame. During the coincident moment that the body frame and lab frame shared the

same coordinates, the action of the projector operatorP j
mL,mB

projecting to this initial state|0, 0, 0〉

resulted in exactly an eigen energy state:
∣
∣j
mL,mB

〉
= P j

mL,mB
|0, 0, 0〉. Then the powerful Wigner-D

matrix stepped in to act as a key role in formula formation, as shown in Equation 4.8:

∣
∣j
mL,mB

〉
=

Pj
mL,mB

|0, 0, 0〉
√

2j + 1
=

1

N

∫
d(α, β, γ) Dj

mL,mB

∗(α, β, γ) R(α, β, γ) |0, 0, 0〉

=

√
2j + 1

8π2

∫ 2π

0

dα

∫ π

0

sinβ dβ

∫ 2π

0

dγ Dj
mL,mB

∗(α, β, γ) |α, β, γ〉 (4.8)

where the termDj
mL,mB

∗(α, β, γ) was the complex conjugate of the Wigner-D matrix, and the ro-

tational position state was|α, β, γ〉 ≡ R(α, β, γ) |0, 0, 0〉. The amplitude
√

2j + 1 Dj
m,n

∗(α, β, γ)

are quantum eigenfunctions of a rigid rotor, and also known as Quantum Rotor Wave Function [41]

ψrotor(j,mL,mB, α, β, γ) =
〈
α, β, γ| j

mL,mB

〉
= 〈0, 0, 0|R∗(α, β, γ)

∣
∣ j

mL,mB

〉

=
√

2j + 1 Dj
mL,mB

∗(α, β, γ) (4.9)

Its squared norm|ψrotor|2 = ψrotor
∗ψrotor yielded the probability for an observation that a rigid

rotor in a eigen energy state
∣
∣j
mL,mB

〉
would be found in rotational position state|α, β, γ〉 [41].
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4.2 Resonances and Revivals in Quantum Rotor

The wave packet of Equation 4.10 is a superposition of(2j + 1) stationary rotor waves ofmB

values is in the range from−j to +j

Ψ(j,mL, α, β, γ, t) =

+j∑

mB=−j

ψrotor(j,mL,mB, α, β, γ) e−i
E(j,mB)

~ t

=
√

2j + 1

+j∑

mB=−j

Dj
mL,mB

∗(α, β, γ) e−i
E(j,mB)

~ t (4.10)

where the eigen energyE(j,mB) is given in Equation 4.3. Here, for studying the essential feature

of quantum dynamics, the initial condition of(α = 0, β = π
2
) was applied in the whole chapter.

In quantum mechanics, there are two kind of angular momentumj: orbital angular momentum

jorbital and spin angular momentumjspin. Orbital angular momentum is corresponding to the

rotating trajectory of quantum object, such as electron orbits the nuclear axis. While spin angular

momentum is an intrinsic quantum mechanical form of angular momentum observed in quantum

object only, such as the intrinsic spin of electron is characterized by quantum number1
2
. It is

noteworthy that spin has no analog in classical mechanics. So that the total angular momentum

(j = jorbital + jspin) in quantum rotor will be falling into two classes: integer spin system and

half-integer spin system.

4.2.1 Integer Spin — Boson System

4.2.1.1 Spinj = 3

For illustrating the properties of integer-spin rotor waves, a simplej = 3 rotor was considered. In

case of the list-plot of quantum rotor waves, as indicated in Figure 4.3, eachψ = D3
3,mB

∗(0, π
2
, γ)

was plotted as a function of angleγ in a range of2π. Forj = 3, a total of(2j+1) = 7 differentmB

values was used, so that there were7 wave functions listed alongmB values in each list plotting

graph. The three graphs from left to right corresponded to the real part of rotor waveRe[ψ], the
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imaginary part of the rotor waveIm[ψ], and the probability of rotor positionψ∗ψ. At the same

time, as indicated in Figure 4.4, the energy-value-based list-plot of quantum rotor waves with

ψ = D3
3,mB

∗(0, π
2
, γ) were plotted as a function of angleγ. A total of 7 wave functions was listed

along their energy values in each list plotting graph (only4 waves are observed because of energy

degeneracy). The three graphs from left to right corresponded to the real part of rotor waveRe[ψ],

the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.

Figure 4.3: ThemB-value-based list-plot of quantum rotor waves that eachψ = D3
3,mB

∗(0, π
2
, γ)

is plotted as a function of angleγ. A total of 7 wave functions are listed alongmB values in each
list plotting graph. The three graphs from left to right are corresponding to the real part of rotor
waveRe[ψ], the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.

Figure 4.4: The energy-value-based list-plot of quantum rotor waves that eachψ =
D3

3,mB

∗(0, π
2
, γ) is plotted as a function of angleγ. A total of 7 wave functions are listed along

their energy values in each list plotting graph (only 4 waves are observed because of energy degen-
eracy). The three graphs from left to right are corresponding to the real part of rotor waveRe[ψ],
the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.

51



In case of the polar plot of quantum rotor waves, as indicated in Figure 4.5, eachψ = D3
3,mB

∗(0, π
2
, γ)

was plotted as a function of angleγ in a range of2π. Forj = 3, there was a total of(2j + 1) = 7

differentmB values, the7 wave functions in the polar plot were listed along withmB values in

each row of graph-list. The three rows from top to bottom corresponded to the real part of rotor

waveRe[ψ], the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.

The dashed circle in each polar plot symbolized the rotor body itself.

It was clearly shown in the bottom row of Figure 4.5 that the probability of rotor position in

each level ofmB was a perfect circle. It should be noted that the symmetry of rotor was exactly

equivalent to the situation of quantum wave in a ring.

For illustration purposes, all the quantum rotor waves were polar plotted together in one single

graph, as shown in Figure 4.6. The radial axis in each graph of Figure 4.6 was the energy level of

rotor wave, but was not in exact energy scale.

The wave packet functionΨ(j = 3,mL = 3, α = 0, β = π
2
, γ, t) was then plotted as function

of angleγ and timet, as illustrated in Figure 4.7. The propagation of wave packet was a symmetric

pattern.
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Figure 4.6: Graph on the left is a collection of all the real part of rotor wavesRe[ψ] that polar
plotted in Figure 4.5, while graph on the right is a collection of all the imaginary part of quantum
rotor wavesIm[ψ] that polar plotted in Figure 4.5. The radial axis in each graph is referred to as
the energy level of rotor wave (not in exact energy scale).

Figure 4.7: The propagation of rotor wave packet ofΨ(j = 3,mL = 3, α = 0, β = π
2
, γ, t). (a)

The wave packet|Ψ| is propagated along the time-steps. (b) The density map of the wave packet
|Ψ| as a function of angle and time. (c) The 3D plot of the wavepacket|Ψ| as a function of angle
and time.
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4.2.1.2 Spinj = 10

In case of higherj systems, such as thej = 10 spin system, a richer quantum dynamic picture was

expected. As indicated in Figure 4.8, eachψ = D10
10,mB

∗(0, π
2
, γ) was list-plotted as a function of

angleγ in a range of2π. Forj = 10, there were a total of(2j+1) = 21 differentmB values, so that

there were21 wave functions listed alongmB values in each list plotting graph. The three graphs

from left to right corresponded to real part of rotor waveRe[ψ], the imaginary part of rotor wave

Im[ψ], and the probability of rotor positionψ∗ψ. At the same time, as indicated in Figure 4.9, the

energy-value-based list-plot of quantum rotor waves withψ = D10
10,mB

∗(0, π
2
, γ) was plotted as a

function of angleγ. A total of 21 wave functions were listed along their energy values in each list

plotting graph (only11 waves are observed because of energy degeneracy). The three graphs from

left to right corresponded to the real part of rotor waveRe[ψ], the imaginary part of rotor wave

Im[ψ], and the probability of rotor positionψ∗ψ.

In case of the polar plot of quantum rotor waves, as indicated in Figure 4.10, eachψ =

D10
10,mB

∗(0, π
2
, γ) was plotted as a function of angleγ in a range of2π. For j = 10, there were

a total of(2j + 1) = 21 differentmB values, so that there were21 wave functions in polar plot

listed alongmB values. The number of nodes of the rotor wave was proportional to themB value.

For illustration purposes, all the quantum rotor waves were polar plotted together in one single

graph, as shown in Figure 4.11. The radial axis in each graph of Figure 4.11 was referred to as the

energy level of rotor wave, but was not in exact energy scale.

The wave packet functionΨ(j = 10,mL = 10, α = 0, β = π
2
, γ, t) was plotted as a function

of angleγ and timet, as illustrated in Figure 4.12. The propagation of wave packet was a symmet-

ric pattern. The propagation of the wave packet was in symmetric pattern. A closer examination

of fractional revival in Figure 4.12 led to a remarkable discovery that the quantum revival struc-

ture was nearly perfect match with the Farey-sum sequence{0
1
, 1

10
, 1

8
, 1

6
, 1

5
, 1

4
, 3

10
, 1

3
, 1

2
, 3

8
, 2

5
...}, as

denoted in the symmetric resonant beats in Figure 4.13.
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The complete revival time of integer-spin rotor wave packet is given simply by

Trev =
2π

Δω
=

2π

E(j, 1) − E(j, 0)
~ (4.11)

whereΔω means the minimum beat frequency between any two eigen frequencies of the rotor

states. According to the eigen energy Equation 4.3, the minimum energy gap occurs between the

mB = 0 andmB = 1 energy levels, so that the minimumΔω = E(j,1)−E(j,0)
~ , as shown in bottom

of Figure 4.9.

Figure 4.8: ThemB-value-based list-plot of quantum rotor waves that eachψ = D10
10,mB

∗(0, π
2
, γ)

is plotted as a function of angleγ. A total of 21 wave functions are listed alongmB values in each
list plotting graph. The three graphs from left to right are corresponding to the real part of rotor
waveRe[ψ], the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.
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Figure 4.9: The energy-value-based list-plot of quantum rotor waves that eachψ =
D10

10,mB

∗(0, π
2
, γ) is plotted as a function of angleγ. A total of 21 wave functions are listed along

their energy values in each list plotting graph (only11 waves are observed because of energy de-
generacy). The three graphs from left to right are corresponding to the real part of rotor wave
Re[ψ], the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.
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Figure 4.12: The propagation of wave packetΨ(j = 10,mL = 10, α = 0, β = π
2
, γ, t). On the top

is a 2D density plot of the norm|Ψ|. On the bottom, is a 3D plot of the norm|Ψ|.
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Figure 4.13: Various resonant beats during one complete revival periodTrev.
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4.2.2 Half-integer Spin — Fermion System

For a half-integer spin system, one of its striking features is that its complete rotation in the range

of 4π instead of the regular2π of integer spin system. In order to build a concrete picture of

the unusual4π rotation, Figure 4.14 shows4π rotation in sequential regular2π rotations. The

detail of a complete4π rotation is distinguished by these two regular2π rotations, as illustrated in

Figure 4.14 (a-b).

Figure 4.14: A sequential polar plots of quantum rotor wave ofj = 3/2 (ψ = D
3/2
3/2,mB

∗(0, π
2
, γ)).

On the top row: (a) The real part of rotor waveRe[ψ] is plotted as function ofγ in the range of
(0−2π). (b) The real part of rotor waveRe[ψ] is plotted in theγ range of(2π−4π). (c) A complete
rotation of the real part of rotor waveRe[ψ] is plotted in a completeγ range of(0 − 4π). On the
bottom row: (d) The imaginary part of rotor waveIm[ψ] is plotted as function ofγ in the range of
(0 − 2π). (e) The imaginary part of rotor waveIm[ψ] is plotted in theγ range of(2π − 4π). (f)
A complete rotation of the imaginary part of rotor waveIm[ψ] is plotted in a completeγ range of
(0 − 4π). The dashed circle in each polar plot symbolizes the rotor body itself.
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4.2.2.1 Spinj = 5
2

For illustrating the properties of half-integer-spin rotor waves, a simplej = 5
2

rotor is con-

sidered. In case of the listed plot of quantum rotor waves, as indicated in Figure 4.15, each

ψ = D
5/2
5/2,mB

∗(0, π
2
, γ) was plotted as a function of angleγ in a range of4π. For j = 5

2
, a to-

tal of (2j + 1) = 6 differentmB values, so that there were6 wave functions are listed along with

mB values in each list plotting graph. The three graphs from left to right corresponded to the real

part of rotor waveRe[ψ], the imaginary part of rotor waveIm[ψ], and the probability of rotor

positionψ∗ψ.

At the same time, as indicated in Figure 4.16, the energy-value-based list-plot of quantum rotor

wavesψ = D
5/2
5/2,mB

∗(0, π
2
, γ) were plotted as a function of angleγ. A total of 6 wave functions

were listed along their energy values in each list plotting graph (only3 waves are observed because

of energy degeneracy). The three graphs from left to right corresponded to the real part of rotor

waveRe[ψ], the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.

In case of the polar plot of quantum rotor waves, as indicated in Figure 4.17, eachψ =

D
5/2
5/2,mB

∗(0, π
2
, γ) is plotted as a function of angleγ in a range of4π. For j = 5/2, a total of

(2j + 1) = 6 differentmB values, so that there are6 wave functions in polar plot are listed along

mB values. The number of node of the rotor wave is proportional with themB value.
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Figure 4.15: ThemB-value-based list-plot of quantum rotor waves that eachψ = D
5/2
5/2,mB

∗(0, π
2
, γ)

is plotted as a function of angleγ. A total of 6 wave functions are listed alongmB values in each
list plotting graph. The three graphs from left to right are corresponding to the real part of rotor
waveRe[ψ], the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.

Figure 4.16: The energy-value-based list-plot of quantum rotor waves that eachψ =

D
5/2
5/2,mB

∗(0, π
2
, γ) is plotted as a function of angleγ. A total of 6 wave functions are listed along

their energy values in each list plotting graph (only3 waves are observed because of energy degen-
eracy). The three graphs from left to right are corresponding to the real part of rotor waveRe[ψ],
the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.
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4.2.2.2 Spinj = 91
2

In case of higherj systems, such as thej = 91
2

spin system, a richer quantum dynamic picture was

expected. As indicated in Figure 4.19, eachψ = D10
10,mB

∗(0, π
2
, γ) was list-plotted as a function of

angleγ in a range of2π. For j = 91
2
, there were a total of(2j + 1) = 20 differentmB values,

so that there were20 wave functions listed along withmB values in each list plotting graph. The

three graphs from left to right corresponded to the real part of rotor waveRe[ψ], the imaginary part

of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ. At the same time, as indicated in

Figure 4.20, the energy-value-based list-plot of quantum rotor wavesψ = D9.5
9.5,mB

∗(0, π
2
, γ) was

plotted as a function of angleγ. A total of 20 wave functions were listed along their energy values

in each list plotting graph (only10 waves were observed because of energy degeneracy). The three

graphs from left to right corresponded to the real part of rotor waveRe[ψ], the imaginary part of

rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.

For illustration purposes, all the quantum rotor waves were polar plotted together in one single

graph, as shown in Figure 4.22. The radial axis in each graph of Figure 4.22 was the energy level

of the rotor wave, but was not in exact energy scale.

The wave packet functionΨ(j = 9.5,mL = 9.5, α = 0, β = π
2
, γ, t) was plotted as function

of angleγ and timet, as illustrated in Figure 4.23. The propagation of the wave packet was in

symmetric pattern. A closer examination of fractional revival in Figure 4.23 led to a remarkable

discovery that the quantum revival structure was nearly perfect match with the Farey-sum sequence

{0
1
, 1

5
, 1

4
, 1

3
, 2

5
, 1

2
, ...} , as denoted in the symmetric resonant beats in Figure 4.24.

The complete revival time of half-integer-spin rotor wave packet is given simply by

Trev =
2π

Δω
=

2π

E(j, 3
2
) − E(j, 1

2
)
~ (4.12)

whereΔω means the minimum beat frequency between any two eigen frequencies of the rotor

states. According to the eigen energy Equation 4.3, the minimum energy gap occurs between the

mB = 1/2 andmB = 3/2 energy levels.
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Figure 4.19: ThemB-value-based list-plot of quantum rotor waves that eachψ = D9.5
9.5,mB

∗(0, π
2
, γ)

is plotted as a function of angleγ. A total of 20 wave functions are listed alongmB values in each
list plotting graph. The three graphs from left to right are corresponding to the real part of rotor
waveRe[ψ], the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.
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Figure 4.20: The energy-value-based list-plot of quantum rotor waves that eachψ =
D9.5

9.5,mB

∗(0, π
2
, γ) is plotted as a function of angleγ. A total of 20 wave functions are listed along

their energy values in each list plotting graph (only10 waves are observed because of energy de-
generacy). The three graphs from left to right are corresponding to the real part of rotor wave
Re[ψ], the imaginary part of rotor waveIm[ψ], and the probability of rotor positionψ∗ψ.
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Figure 4.21: Polar plot of quantum rotor waves that eachψ = D9.5
9.5,mB

∗(0, π
2
, γ) is plotted as a

function of angleγ in a range of4π. A total of 20 polar plots are listed alongmB values. Each
polar plot is corresponding to the real part of rotor waveRe[ψ]. The dashed circle in each polar
plot symbolizes the rotor body itself.
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Figure 4.22: Graph on the left is a collection of all the real part of rotor wavesRe[ψ] that polar
plotted in Figure 4.21, while graph on the right is a collection of all the imaginary part of quantum
rotor wavesIm[ψ] that polar plotted in Figure 4.21. The radial axis in each graph is referred to as
the energy level of rotor wave (not in exact energy scale).
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Figure 4.23: The propagation of wave packetΨ(j = 9.5,mL = 9.5, α = 0, β = π
2
, γ, t). On the

top is a 2D density plot of the norm|Ψ|. On the bottom, is a 3D plot of the norm|Ψ|.
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Figure 4.24: Various symmetric resonant beat during one complete revival periodTrev.
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4.3 Conclusion of Rotor Dynamics

In conclusion, quantum rotor wave functions based upon Wigner-D matrix were applied to inves-

tigate the quantum resonance and revivals that occur in experimentally accessible spin systems.

Interesting physical effects in quantum rotors between half-integer spin and integer spin systems

was observed that showed effects of symmetry. This study will pave the way for more rich dy-

namic behaviors in asymmetric tops that include dynamic tunneling between various equivalent

energy surface topography for asymmetric quantum rotors. A key point is that the quantum re-

vivals in the rotor systems exhibited number-information aspects of surprisingly simple Farey-sum

and Ford-circle geometry.
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Chapter 5

Conclusion

This investigation of quantum resonant beats and revivals in Morse oscillators and Symmetric

rotor was provided a deeper insight into the physical reality of quantum wave interference. Indeed.

advanced analytical and numerical tools were developed to efficiently visualize and predict the

phenomenon of interference beats and revivals in more detail than has been reported before.

For the Morse oscillator, the exact analytical wavefunctions of the Morse oscillator allowed an

detailed analysis of the rich behavior of the quantum dynamics. Based on the key parameterδN

relating with the gap between the highest bound eigenstate and the dissociation energy, a concise

way for searching the exact complete revival timeTrev of the Morse oscillator was given for the first

time. The applications of two fundamental periodsTmax−beat andTmin−rev allowed the discovery

of the relationship between Fibonacci sequence and the Morse complete revival time. Particularly,

the minimum periodTmin−rev suggested a quantized period concept that the complete period is

made of integer numbers of the fundamental period in the quantum world of the Morse oscillator.

A closer examination led to a discovery that the quantum resonance and revival structure had a

curious connection with the Farey-sum structure, which was illustrated with the classical Ford

circles. This Fibonacci-Farey-Ford geometry should provide a further step towards a systematic

understanding of the quantum wave packet dynamics.

For double-Morse oscillators, with a best-fit parameters scheme, a specified double-Morse po-

tential was developed to have high fidelity of the quasi-solvable Razavy potential. So that exact

analytical eigenfunctions and eigenvalues up ton = 22 energy levels of the double-well potential

are achieved for the first time. Through an efficient matrix scheme, fine detail of an energy split-

ting analysis was available for the study of the diverse behavior of quantum dynamics involving

tunneling. A closer examination led to a discovery that the non-tunneling wave functions had a

significant tsunami-like wave effect, which is relevant on the local top (coastal beach landscape) in

the double-well potential. This exact computed energy in a deep double-Morse potential is desired

for many applications, because exact solutions of the unperturbed model will make the perturba-
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tion effect easy to handle in practical problems, and has set up a solid basis for the future study of

quantum interference and entanglement.

For quantum rotors, quantum rotor wave functions based upon Wigner-D matrix were applied

to investigate the quantum resonance and revivals that occur in experimentally accessible spin sys-

tems. Interesting physical effects in quantum rotors between half-integer spin and integer spin

systems was observed to show the effects of symmetry. This study will pave the way for under-

standing colorful dynamic behaviors in asymmetric tops that include dynamic tunneling between

various equivalent energy surface topography for asymmetric quantum rotors. A key point was

that the quantum revivals in the rotor systems exhibited number-information aspects of surpris-

ingly simple Farey-sum and Ford-circle geometry.

Notably, the novel features of the resonant states emerging from these quantum models are

leading to interesting findings, such as the possible university of Farey-sum revival structures. Im-

portantly, these simple quantum models will provide remarkable examples of naturally occurring

and experimentally accessible systems, in which the resonance and revival of quantum matter wave

may eventually lead to great applications for quantum information processing and computing.
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Appendix A

Description of Research for Popular Publication

Exactly prediction of period is extremely important for many applications in the advancement
level of civilization in human history. In ancient time, accurate dated celestial events are essential
things for establishing a coherent society, such as lunar phase calendar for cultivating crops. Par-
ticularly, the Moon eclipse and Solar eclipse were vital for religious, political, and social purposes,
so that, the prediction of eclipse period is of great challenges for ancient astrologers. In modern
time, advanced microelectronic and photonic devices are all based on the novel quantum wave me-
chanics, so the prediction of quantum wave events is of great interests for cutting edge technology.
However, the exact prediction of quantum wave revivals is of great challenges for quantum scien-
tists. Now, for the first time, the exact prediction of quantum wave events in anharmonic Morse
oscillator has been achieved by a concise formula.

“Consider an analogy with macro lunar event to describe micro quantum event, the achieve-
ment of my formula is likely to develop an exact prediction of moon eclipse, whereas existing
publications are only of moon phase forecasting,” says Alvason Zhenhua Li, a recent Ph.D. gradu-
ate at University of Arkansas. “I am quite amazed that the formula I made stands up and gives rise
precise results for any parameters. I almost gave up during this long-haul researching journey.”

His prediction method is of building block concept — In this quantum world, there is existing
the minimum or fundamental period, any completely period is made of integer numbers of the
fundamental period. Thus, any complete period in the quantum world is quantized. Alvason thinks
his strategy for searching exact period prediction may be applied in other areas, such as stock
market trend and earthquake prediction.

“More interesting thing is that there are two kinds of building block for the same period,” says
Alvason. “A useful analogy to this fact is that we can pay the same product by two basic monetary
units, such as applying either U.S. dollar or Chinese yuan. The fantastic thing is that the exchange
rate between these two currencies is exhibiting Fibonacci ratio when they are used in the quantum
world.”

Within a fundamental period, the resonant pattern of the quantum wave packet will exhibit the
same as the geometric pattern of Ford circles in classical daily world. “The beauty of this research
is that modern quantum resonant pattern can be traced and outlined by ancient Greek geometry,”
says William Harter, a theoretical physicist specializing in molecular dynamics and spectroscopy
at University of Arkansas. “Remarkably, this Ford circles or Farey-sum feature is sharing among
several quantum systems including quantum oscillators and rotors.

“My cooperator in physics at Caltech suggests this fantastic research to be published in Physical
Review Letters”, says Wenying Shou, a professor of the basic science division at FHCRC center,
Seattle.

Both William Harter and Alvason Li suggest that this simple quantum model will provide re-
markable examples of naturally occurring and experimentally accessible systems, in which the
resonance and revival of quantum matter wave may eventually lead to great applications for quan-
tum information processing and computing.
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Appendix B

Executive Summary of Newly Created Intellectual Property

A total of four new intellectual property items were created and developed during this disser-

tation research:

1. An idea or concept of quantized period in certain quantum world.

2. A method for exactly predicting revival period in quantum resonance and revivals of the

Morse oscillator.

3. A discovery of Farey-sum structure and Ford circles geometry in the quantum resonance and

revivals of the Morse oscillator and quantum rotors.

4. A best-fit-parameter scheme and the corresponding efficient matrix scheme for the exact

solutions in the Double-Morse oscillator.
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Appendix C

Potential Patent and Commercialization Aspects of Each Numbered Item in Appendix B

C.1 Patentability of Intellectual Property

First, the listed items were considered from the perspective of whether or not the item could be

patented.

1. The idea or concept of quantized period can not be patented, because it is just a new scientific

term.

2. The method developed in this research to predict the completely revival time in the quantum

resonance and revivals of the Morse oscillator will not be patented, because the detailed

application scheme is required for the patent processing.

3. The discovery of Farey-sum structure and Ford circles geometry in the quantum resonance

and revivals will not be patented, because the detailed application scheme is required for the

patent processing.

4. The best-fit-parameter scheme and the corresponding efficient matrix algorithm for the exact

solutions in the Double-Morse oscillator will not patented, because the detailed application

scheme is required for the patent processing.

C.2 Commercialization Possibilities of Intellectual Property

Then, the following listed were considered from the perspective of whether or not the item should

be patented.

1. The idea or concept of quantized period can not be patented.

2. The method developed in this research to predict the completely revival time in the quantum

resonance and revivals of the Morse oscillator should not be patented. Because the detailed

application scheme is lacking.
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3. The discovery of Farey-sum structure and Ford circles geometry in the quantum resonance

and revivals should not be patented. Because the detailed application scheme is lacking.

4. The best-fit-parameter scheme and the corresponding efficient matrix algorithm for the ex-

act solutions in the Double-Morse oscillator should not be patented. Because the detailed

application scheme is lacking.

C.3 Possible Prior Disclosure of Intellectual Property

The following items were discussed in a public forum that could impact the patentability of the

listed intellectual property.

1. The idea or concept of quantized period has been discussed in an international conference,

however, the detail of method has not been published.

2. This newly developed method of period prediction has been discussed in an international

conference, however, the detail of the method has not been published.

3. The discovery of Farey-sum structure and Ford circles geometry in Morse oscillator has

been discussed in two international conference (the APS March Meeting 2012 and the In-

ternational Symposium on Molecular Spectroscopy 2012), however, the detail of analysis

has not been published. The discovery of Farey-sum structure and Ford circles geometry in

half-integer spin system has not been discussed in any forum.

4. The best-fit-parameter scheme and the corresponding efficient matrix algorithm for the exact

solutions in the Double-Morse oscillator has been discussed in an international conference

(the International Symposium on Molecular Spectroscopy, 67th meeting 2012), however, the

detail of scheme and algorithm has not been published.
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Appendix D

Broader Impact of Research

D.1 Applicability of Research Methods to Other Problems

The strategy and approach for developing exactly prediction of quantum resonant beat and revival

period were considered valuable in any prediction or forecast system. In principle, any system has

its unique harmonic or resonant frequency so that the basic philosophy of this research could be

applied elsewhere.

D.2 Impact of Research Results on U.S. and Global Society

The idea or concept of quantized period is created for the first time, will have profound impact on

U.S. and global society. In this dissertation research, the author proposed and developed a creative

idea that in a certain quantum world, there is existing a minimum or fundamental period, any

completely period is made of the fundamental period integrally. Thus, the completely period of a

quantum world is quantized. For this reason, a instant method for global knowledge distribution

of this dissertation contents should be considered.

D.3 Impact of Research Results on the Environment

This research method is purely theoretical way that does not have any unfavorable or harmful

environmental impact. However, this research method of double-well or bistable system may

potentially be applied to model the environment problems.
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Microsoft Project Printout of Microelectronics-Photonics PhD Degree Plan
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Appendix F

Identification of All Software Used in Research and Dissertation Generation

Computer #1:

Model Number: MacBook Pro

Serial Number: W88494381GN

Location: Laptop

Owner: A. Zhenhua Li

Software #1:

Name: Mathematica 8 for Students

Purchased by: A. Zhenhua Li

License #: 3226-6762

Software #2:

Name: Microsoft Office 2008 for Mac

Purchased by: A. Zhenhua Li

Product ID #: 92464-498-6887922-12071

Software #3:

Name:BaKoMa Tex

Purchased by: A. Zhenhua Li

Serial Number: 18727P1584
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Appendix G

All Publications Published, Submitted and Planned

G.1 Publications in Journal Papers

First Author:

1. “Quantum Revivals of Morse Oscillator and Fibonacci-Farey-Ford Geometry",
AlvasonZhenhua Li, William G. Harter,in reviewing and publishing processing, 2013.

2. “Holed Nanostructures Formed by Aluminum Droplets on a GaAs Substrate",
AlvasonZhenhua Li, Zhiming M. Wang, Jiang Wu, and Gregory J. Salamo.

Nano Res., 3: 490-495 (2010).

3. “Evolution of Holed Nanostructures on GaAs",
AlvasonZhenhua Li, Zhiming M. Wang, Jiang Wu, Yanze Xie, Kim A. Sablon, and Gregory
J. Salamo.

Multiple First Authors:

1. “Critical size of self-propelled motion of droplets on GaAs (100) surface",Jiang Wu,
Zhiming M. Wang,AlvasonZ. Li, Mourad Benamara, Jihoon Lee, Sabina D. Koukourinkova,
Eun Soo Kim, and Gregory J. Salamo.J. Appl. Phys. 112, 043523 (2012)

2. “Nanoscale Footprints of Self-Running Gallium Droplets on GaAs Surface",Jiang Wu,
Zhiming M. Wang,AlvasonZ. Li, Mourad Benamara, Shibin Li, Gregory J. Salamo.PLoS
ONE 6(6): e20765. doi:10.1371/journal.pone.0020765 (2011)

3. “On the Secondary Droplets of Self-Running Gallium Droplets on GaAs Surface",Wu,
Jiang; Wang, ZhimingM.; Li, Alvason Z.; Benamara, Mourad; Salamo, Gregory J..ACS
Applied Materials & Interfaces, 3, 6, 1817-1820 (2011)

G.2 Publications in Conference Abstracts and Contributed Talks

1. “Resonace and revival in Quantum Rotors: Comparing half-integer and integer spin",Inter-
national Symposium on Molecular Spectroscopy, 68th Meeting (2013)

2. “Resonace and revival in Morse Oscillator and double Morse Well Dynamics",International
Symposium on Molecular Spectroscopy, 67th Meeting (2012)

3. “Quantum Revivals of the Morse Oscillator in Position Space and Momentum Space",Amer-
ican Physical Society March Meeting (2012)

4. “Nanorings of Aluminum Droplet Epitaxy on GaAs Substrate",Materials Research Society
Fall Meeting (2009)
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